File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects
  • Basic View
  • Metadata View
  • XML View
TitleA 2D threshold-voltage model for small MOSFET with quantum-mechanical effects
 
AuthorsXu, JP3
Li, YP3
Lai, PT1
Chen, WB3
Xu, SG3
Guan, JG2
 
Issue Date2008
 
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/microrel
 
CitationMicroelectronics Reliability, 2008, v. 48 n. 1, p. 23-28 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.microrel.2006.12.007
 
AbstractA threshold condition different from the classical one is proposed for MOSFET with quantum effects, and is based on self-consistent numerical solution of the Schrödinger's and Poisson's equations. Furthermore, an accurate 1D threshold-voltage model including polysilicon-depletion effects is built by experimental fitting. Simulated results exhibit good agreement with measurement data. Based on this 1D model, a 2D quantum-modified threshold-voltage model for small MOSFET is developed by solving the quasi-2D Poisson's equation and taking short-channel effects and quantum-mechanical effects into consideration. The model can also be used for deep-submicron MOSFET with high-k gate-dielectric and reasonable design of device parameters. © 2007 Elsevier Ltd. All rights reserved.
 
ISSN0026-2714
2013 Impact Factor: 1.214
2013 SCImago Journal Rankings: 0.631
 
DOIhttp://dx.doi.org/10.1016/j.microrel.2006.12.007
 
ISI Accession Number IDWOS:000254372300003
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorXu, JP
 
dc.contributor.authorLi, YP
 
dc.contributor.authorLai, PT
 
dc.contributor.authorChen, WB
 
dc.contributor.authorXu, SG
 
dc.contributor.authorGuan, JG
 
dc.date.accessioned2010-09-06T06:57:55Z
 
dc.date.available2010-09-06T06:57:55Z
 
dc.date.issued2008
 
dc.description.abstractA threshold condition different from the classical one is proposed for MOSFET with quantum effects, and is based on self-consistent numerical solution of the Schrödinger's and Poisson's equations. Furthermore, an accurate 1D threshold-voltage model including polysilicon-depletion effects is built by experimental fitting. Simulated results exhibit good agreement with measurement data. Based on this 1D model, a 2D quantum-modified threshold-voltage model for small MOSFET is developed by solving the quasi-2D Poisson's equation and taking short-channel effects and quantum-mechanical effects into consideration. The model can also be used for deep-submicron MOSFET with high-k gate-dielectric and reasonable design of device parameters. © 2007 Elsevier Ltd. All rights reserved.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationMicroelectronics Reliability, 2008, v. 48 n. 1, p. 23-28 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.microrel.2006.12.007
 
dc.identifier.doihttp://dx.doi.org/10.1016/j.microrel.2006.12.007
 
dc.identifier.epage28
 
dc.identifier.hkuros150281
 
dc.identifier.isiWOS:000254372300003
 
dc.identifier.issn0026-2714
2013 Impact Factor: 1.214
2013 SCImago Journal Rankings: 0.631
 
dc.identifier.issue1
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-39149113844
 
dc.identifier.spage23
 
dc.identifier.urihttp://hdl.handle.net/10722/74111
 
dc.identifier.volume48
 
dc.languageeng
 
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/microrel
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofMicroelectronics Reliability
 
dc.relation.referencesReferences in Scopus
 
dc.titleA 2D threshold-voltage model for small MOSFET with quantum-mechanical effects
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Xu, JP</contributor.author>
<contributor.author>Li, YP</contributor.author>
<contributor.author>Lai, PT</contributor.author>
<contributor.author>Chen, WB</contributor.author>
<contributor.author>Xu, SG</contributor.author>
<contributor.author>Guan, JG</contributor.author>
<date.accessioned>2010-09-06T06:57:55Z</date.accessioned>
<date.available>2010-09-06T06:57:55Z</date.available>
<date.issued>2008</date.issued>
<identifier.citation>Microelectronics Reliability, 2008, v. 48 n. 1, p. 23-28</identifier.citation>
<identifier.issn>0026-2714</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/74111</identifier.uri>
<description.abstract>A threshold condition different from the classical one is proposed for MOSFET with quantum effects, and is based on self-consistent numerical solution of the Schr&#246;dinger&apos;s and Poisson&apos;s equations. Furthermore, an accurate 1D threshold-voltage model including polysilicon-depletion effects is built by experimental fitting. Simulated results exhibit good agreement with measurement data. Based on this 1D model, a 2D quantum-modified threshold-voltage model for small MOSFET is developed by solving the quasi-2D Poisson&apos;s equation and taking short-channel effects and quantum-mechanical effects into consideration. The model can also be used for deep-submicron MOSFET with high-k gate-dielectric and reasonable design of device parameters. &#169; 2007 Elsevier Ltd. All rights reserved.</description.abstract>
<language>eng</language>
<publisher>Pergamon. The Journal&apos;s web site is located at http://www.elsevier.com/locate/microrel</publisher>
<relation.ispartof>Microelectronics Reliability</relation.ispartof>
<title>A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=0026-2714&amp;volume=48&amp;spage=23&amp;epage=28&amp;date=2008&amp;atitle=A+2-D+Threshold-Voltage+Model+for+Small+MOSFET+with+Quantum-Mechanical+Effects</identifier.openurl>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1016/j.microrel.2006.12.007</identifier.doi>
<identifier.scopus>eid_2-s2.0-39149113844</identifier.scopus>
<identifier.hkuros>150281</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-39149113844&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>48</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>23</identifier.spage>
<identifier.epage>28</identifier.epage>
<identifier.isi>WOS:000254372300003</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Wuhan University of Technology
  3. Huazhong University of Science and Technology