File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Image compression based on energy clustering and zero-quadtree representation

TitleImage compression based on energy clustering and zero-quadtree representation
Authors
Issue Date2000
PublisherIEE.
Citation
Iee Proceedings: Vision, Image And Signal Processing, 2000, v. 147 n. 6, p. 564-570 How to Cite?
AbstractAn efficient image compression algorithm based on energy clustering and zero-quadtree representation (ECZQR) in the wavelet transform domain is proposed. In embedded coding, zeros within each subband are encoded in the framework of quadtree representation instead of zerotree representation. To use large rectangular blocks to represent zeros, it first uses morphological dilation to extract the arbitrarily shaped clusters of significant coefficients within each subband. The proposed encoding method results in less distortion in the decoded image than the line-by-line encoding method. Experimental results show that the algorithm is among the most efficient wavelet image compression algorithms.
Persistent Identifierhttp://hdl.handle.net/10722/73841
ISSN
2006 Impact Factor: 0.461
2009 SCImago Journal Rankings: 0.450
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZhong, JMen_HK
dc.contributor.authorLeung, CHen_HK
dc.contributor.authorTang, YYen_HK
dc.date.accessioned2010-09-06T06:55:17Z-
dc.date.available2010-09-06T06:55:17Z-
dc.date.issued2000en_HK
dc.identifier.citationIee Proceedings: Vision, Image And Signal Processing, 2000, v. 147 n. 6, p. 564-570en_HK
dc.identifier.issn1350-245Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/73841-
dc.description.abstractAn efficient image compression algorithm based on energy clustering and zero-quadtree representation (ECZQR) in the wavelet transform domain is proposed. In embedded coding, zeros within each subband are encoded in the framework of quadtree representation instead of zerotree representation. To use large rectangular blocks to represent zeros, it first uses morphological dilation to extract the arbitrarily shaped clusters of significant coefficients within each subband. The proposed encoding method results in less distortion in the decoded image than the line-by-line encoding method. Experimental results show that the algorithm is among the most efficient wavelet image compression algorithms.en_HK
dc.languageengen_HK
dc.publisherIEE.en_HK
dc.relation.ispartofIEE Proceedings: Vision, Image and Signal Processingen_HK
dc.titleImage compression based on energy clustering and zero-quadtree representationen_HK
dc.typeArticleen_HK
dc.identifier.emailLeung, CH:chleung@eee.hku.hken_HK
dc.identifier.authorityLeung, CH=rp00146en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1049/ip-vis:20000752en_HK
dc.identifier.scopuseid_2-s2.0-0034427920en_HK
dc.identifier.hkuros61378en_HK
dc.identifier.volume147en_HK
dc.identifier.issue6en_HK
dc.identifier.spage564en_HK
dc.identifier.epage570en_HK
dc.identifier.isiWOS:000167096000011-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridZhong, JM=8079523800en_HK
dc.identifier.scopusauthoridLeung, CH=7402612415en_HK
dc.identifier.scopusauthoridTang, YY=7404591899en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats