File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Approximations for the dynamic security region of network-reduction power system

TitleApproximations for the dynamic security region of network-reduction power system
基于網絡約化模型的電力系統動態安全域近似
Authors
KeywordsDynamic security region (動態安全域)
Quadratic approximation (暫態穩定)
Stability region (穩定域)
Transient stability (二次近似)
Issue Date2005
PublisherDianli Xitong Zidonghua Zazhishe (電力系統自動化雜誌社)
Citation
Automation Of Electric Power Systems, 2005, v. 29 n. 13, p. 18-23+44 How to Cite?
電力系統自動化, 2005, v. 29 n. 13, p. 18-23+44 How to Cite?
AbstractBased on the explicit analytical equation for the stable manifold of the post fault stability region determined by the controlling unstable equilibrium points, this paper develops the explicit analytical equation for the local dynamic security region of network-reduction power systems. It presents the linear (QL method) and quadratic (QQ method) approximations for the dynamic security region based on the quadratic approximation for stable manifold and sensitivities. Furthermore, this paper compares the proposed methods to the linear approximation (LL method) of the dynamic security region based on the linear approximation for the stability region. The simulations in SMIB and IEEE 9-bus systems show that in the small-scale power systems, the LL method is robust but it may result in relative serious deviation. It is also shown that the QQ method may display fairly accurate estimation but it is sensitive to the initial parameters, and fortunately, the QL method is robust and it may meet the engineering requirements. 基于故障后主導不穩定平衡點所決定的穩定域邊界的顯式方程及其二次近似,并結合靈敏度分析法,給出了基于網絡約化模型的電力系統在給定故障下動態安全域的顯式形式及其線性近似(稱為“Q線性近似”)和擬二次近似。進一步,與基于穩定域邊界線性近似的動態安全域線性近似(稱為“L線性近似”)進行了比較分析,所得仿真結果表明:L線性近似精確度較低;擬二次近似局部精確度較高,但依賴于初始參數的選擇;Q線性近似不僅精確度高,而且對初始參數選擇的變化不敏感,能夠滿足工程要求,具有較強的適用性。
Persistent Identifierhttp://hdl.handle.net/10722/73782
ISSN
2023 SCImago Journal Rankings: 1.171
ISI Accession Number IDCSCD:2189178
References

 

DC FieldValueLanguage
dc.contributor.authorXue, ACen_HK
dc.contributor.authorMei, SWen_HK
dc.contributor.authorLu, Qen_HK
dc.contributor.authorWu, FFen_HK
dc.date.accessioned2010-09-06T06:54:42Z-
dc.date.available2010-09-06T06:54:42Z-
dc.date.issued2005en_HK
dc.identifier.citationAutomation Of Electric Power Systems, 2005, v. 29 n. 13, p. 18-23+44en_HK
dc.identifier.citation電力系統自動化, 2005, v. 29 n. 13, p. 18-23+44-
dc.identifier.issn1000-1026en_HK
dc.identifier.urihttp://hdl.handle.net/10722/73782-
dc.description.abstractBased on the explicit analytical equation for the stable manifold of the post fault stability region determined by the controlling unstable equilibrium points, this paper develops the explicit analytical equation for the local dynamic security region of network-reduction power systems. It presents the linear (QL method) and quadratic (QQ method) approximations for the dynamic security region based on the quadratic approximation for stable manifold and sensitivities. Furthermore, this paper compares the proposed methods to the linear approximation (LL method) of the dynamic security region based on the linear approximation for the stability region. The simulations in SMIB and IEEE 9-bus systems show that in the small-scale power systems, the LL method is robust but it may result in relative serious deviation. It is also shown that the QQ method may display fairly accurate estimation but it is sensitive to the initial parameters, and fortunately, the QL method is robust and it may meet the engineering requirements. 基于故障后主導不穩定平衡點所決定的穩定域邊界的顯式方程及其二次近似,并結合靈敏度分析法,給出了基于網絡約化模型的電力系統在給定故障下動態安全域的顯式形式及其線性近似(稱為“Q線性近似”)和擬二次近似。進一步,與基于穩定域邊界線性近似的動態安全域線性近似(稱為“L線性近似”)進行了比較分析,所得仿真結果表明:L線性近似精確度較低;擬二次近似局部精確度較高,但依賴于初始參數的選擇;Q線性近似不僅精確度高,而且對初始參數選擇的變化不敏感,能夠滿足工程要求,具有較強的適用性。en_HK
dc.languagechien_HK
dc.publisherDianli Xitong Zidonghua Zazhishe (電力系統自動化雜誌社)-
dc.relation.ispartofAutomation of Electric Power Systemsen_HK
dc.relation.ispartof電力系統自動化-
dc.subjectDynamic security region (動態安全域)en_HK
dc.subjectQuadratic approximation (暫態穩定)en_HK
dc.subjectStability region (穩定域)en_HK
dc.subjectTransient stability (二次近似)en_HK
dc.titleApproximations for the dynamic security region of network-reduction power systemen_HK
dc.title基于網絡約化模型的電力系統動態安全域近似-
dc.typeArticleen_HK
dc.identifier.emailWu, FF: ffwu@eee.hku.hken_HK
dc.identifier.authorityWu, FF=rp00194en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-23444434357en_HK
dc.identifier.hkuros119154en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-23444434357&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume29en_HK
dc.identifier.issue13en_HK
dc.identifier.spage18en_HK
dc.identifier.epage23+44en_HK
dc.identifier.isiCSCD:2189178-
dc.publisher.placeChina (中國)en_HK
dc.identifier.scopusauthoridXue, AC=7005988274en_HK
dc.identifier.scopusauthoridMei, SW=7102846252en_HK
dc.identifier.scopusauthoridLu, Q=35513737300en_HK
dc.identifier.scopusauthoridWu, FF=7403465107en_HK
dc.customcontrol.immutablecsl 150622-
dc.identifier.issnl1000-1026-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats