File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Integral equation approach for 3D multiple-crack problems

TitleIntegral equation approach for 3D multiple-crack problems
Authors
Issue Date2005
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/engfracmech
Citation
Engineering Fracture Mechanics, 2005, v. 72 n. 12 SPEC. ISS., p. 1830-1840 How to Cite?
AbstractIn this paper, a traction integral equation containing no hypersingular integrals is presented to study the interaction of multiple cracks in an infinite elastic medium. 8-node quadratic quadrilateral elements are used to discretize general crack surfaces, and special crack tip elements are employed along surface boundaries to model the √r variation of displacements near the crack fronts. Thus, the method possesses the merits of the traction integral equation without hypersingular integrals and those of the special crack tip elements for modeling √r variation of displacements near the crack tips. The stress intensity factors at the crack front are evaluated using one point formulation and the results are compared with available solutions. © 2005 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/71244
ISSN
2015 Impact Factor: 2.024
2015 SCImago Journal Rankings: 1.423
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLo, SHen_HK
dc.contributor.authorDong, CYen_HK
dc.contributor.authorCheung, YKen_HK
dc.date.accessioned2010-09-06T06:30:14Z-
dc.date.available2010-09-06T06:30:14Z-
dc.date.issued2005en_HK
dc.identifier.citationEngineering Fracture Mechanics, 2005, v. 72 n. 12 SPEC. ISS., p. 1830-1840en_HK
dc.identifier.issn0013-7944en_HK
dc.identifier.urihttp://hdl.handle.net/10722/71244-
dc.description.abstractIn this paper, a traction integral equation containing no hypersingular integrals is presented to study the interaction of multiple cracks in an infinite elastic medium. 8-node quadratic quadrilateral elements are used to discretize general crack surfaces, and special crack tip elements are employed along surface boundaries to model the √r variation of displacements near the crack fronts. Thus, the method possesses the merits of the traction integral equation without hypersingular integrals and those of the special crack tip elements for modeling √r variation of displacements near the crack tips. The stress intensity factors at the crack front are evaluated using one point formulation and the results are compared with available solutions. © 2005 Elsevier Ltd. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/engfracmechen_HK
dc.relation.ispartofEngineering Fracture Mechanicsen_HK
dc.titleIntegral equation approach for 3D multiple-crack problemsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0013-7944&volume=72&spage=1830&epage=1840&date=2005&atitle=Integral+equation+approach+for+3D+multiple-crack+problemsen_HK
dc.identifier.emailLo, SH:hreclsh@hkucc.hku.hken_HK
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_HK
dc.identifier.authorityLo, SH=rp00223en_HK
dc.identifier.authorityCheung, YK=rp00104en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.engfracmech.2004.11.009en_HK
dc.identifier.scopuseid_2-s2.0-18144374569en_HK
dc.identifier.hkuros103459en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-18144374569&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume72en_HK
dc.identifier.issue12 SPEC. ISS.en_HK
dc.identifier.spage1830en_HK
dc.identifier.epage1840en_HK
dc.identifier.isiWOS:000229496800005-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridLo, SH=7401542444en_HK
dc.identifier.scopusauthoridDong, CY=14031303000en_HK
dc.identifier.scopusauthoridCheung, YK=7202111065en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats