File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system

TitleA modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system
Authors
Issue Date1996
PublisherElsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvi
Citation
Journal Of Sound And Vibration, 1996, v. 193 n. 4, p. 751-762 How to Cite?
AbstractA modified Lindstedt-Poincaré (L-P) method for extending the validity of perturbation expansions to strongly non-linear oscillations of two-degree-of-freedom (DOF) systems is presented. A parameter transformation α = α(ε, ω0, ω1) is adopted such that a strongly non-linear system with a large parameter ω is transformed into a small parameter system with respect to α: A typical cubic non-linear system in the form of a clamped-hinged beam is used to show its essential features. Three examples are presented to show the efficiency and the advantages of this method. © 1996 Academic Press Limited.
Persistent Identifierhttp://hdl.handle.net/10722/70986
ISSN
2015 Impact Factor: 2.107
2015 SCImago Journal Rankings: 1.494
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChen, SHen_HK
dc.contributor.authorCheung, YKen_HK
dc.date.accessioned2010-09-06T06:27:53Z-
dc.date.available2010-09-06T06:27:53Z-
dc.date.issued1996en_HK
dc.identifier.citationJournal Of Sound And Vibration, 1996, v. 193 n. 4, p. 751-762en_HK
dc.identifier.issn0022-460Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/70986-
dc.description.abstractA modified Lindstedt-Poincaré (L-P) method for extending the validity of perturbation expansions to strongly non-linear oscillations of two-degree-of-freedom (DOF) systems is presented. A parameter transformation α = α(ε, ω0, ω1) is adopted such that a strongly non-linear system with a large parameter ω is transformed into a small parameter system with respect to α: A typical cubic non-linear system in the form of a clamped-hinged beam is used to show its essential features. Three examples are presented to show the efficiency and the advantages of this method. © 1996 Academic Press Limited.en_HK
dc.languageengen_HK
dc.publisherElsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jsvien_HK
dc.relation.ispartofJournal of Sound and Vibrationen_HK
dc.titleA modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom systemen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0022-460X&volume=193 &issue=4&spage=751 &epage= 762&date=1998&atitle=A+modified+Lindstedt-Poincare+Method+for+a+strongly+non-linear+two+degree-of-freedom+systemen_HK
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_HK
dc.identifier.authorityCheung, YK=rp00104en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1006/jsvi.1996.0313en_HK
dc.identifier.scopuseid_2-s2.0-0030168604en_HK
dc.identifier.hkuros38143en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0030168604&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume193en_HK
dc.identifier.issue4en_HK
dc.identifier.spage751en_HK
dc.identifier.epage762en_HK
dc.identifier.isiWOS:A1996UT20000001-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridChen, SH=7410249167en_HK
dc.identifier.scopusauthoridCheung, YK=7202111065en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats