File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Determination of Jordan chains by extended matrices

TitleDetermination of Jordan chains by extended matrices
Authors
KeywordsDerogatory eigenproblems
Jordan blocks
Jordan chains
Segre characteristic
Issue Date1998
PublisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/1069-8299/
Citation
Communications In Numerical Methods In Engineering, 1998, v. 14 n. 9, p. 879-893 How to Cite?
AbstractThe major obstacle to determination of the Jordan chains for a highly degenerated eigenproblem is that the triangular combinations of the principal vectors in a Jordan chain are also principal vectors and the linear combinations of the eigenvectors of all Jordan blocks associated with the same eigenvalue are also eigenvectors. These indeterminate constants will hide the Jordan block structure and make the analysis very difficult. We propose an extended matrix method to find the Jordan chains and eliminate the indeterminate constants so that the Jordan block structure can be computed sequentially. An example with the Segre characteristic [(321)11] is given. © 1998 John Wiley & Sons, Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/70757
ISSN
2011 Impact Factor: 1.754
References

 

DC FieldValueLanguage
dc.contributor.authorWong, SCen_HK
dc.contributor.authorLeung, AYTen_HK
dc.date.accessioned2010-09-06T06:25:51Z-
dc.date.available2010-09-06T06:25:51Z-
dc.date.issued1998en_HK
dc.identifier.citationCommunications In Numerical Methods In Engineering, 1998, v. 14 n. 9, p. 879-893en_HK
dc.identifier.issn1069-8299en_HK
dc.identifier.urihttp://hdl.handle.net/10722/70757-
dc.description.abstractThe major obstacle to determination of the Jordan chains for a highly degenerated eigenproblem is that the triangular combinations of the principal vectors in a Jordan chain are also principal vectors and the linear combinations of the eigenvectors of all Jordan blocks associated with the same eigenvalue are also eigenvectors. These indeterminate constants will hide the Jordan block structure and make the analysis very difficult. We propose an extended matrix method to find the Jordan chains and eliminate the indeterminate constants so that the Jordan block structure can be computed sequentially. An example with the Segre characteristic [(321)11] is given. © 1998 John Wiley & Sons, Ltd.en_HK
dc.languageengen_HK
dc.publisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/1069-8299/en_HK
dc.relation.ispartofCommunications in Numerical Methods in Engineeringen_HK
dc.rightsCommunications in Numerical Methods in Engineering. Copyright © John Wiley & Sons Ltd.en_HK
dc.subjectDerogatory eigenproblemsen_HK
dc.subjectJordan blocksen_HK
dc.subjectJordan chainsen_HK
dc.subjectSegre characteristicen_HK
dc.titleDetermination of Jordan chains by extended matricesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1069-8299&volume=14&spage=879 &epage= 893&date=1998&atitle=Determination+of+Jordan+Chains+by+extended+matricesen_HK
dc.identifier.emailWong, SC:hhecwsc@hku.hken_HK
dc.identifier.authorityWong, SC=rp00191en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-0032164789en_HK
dc.identifier.hkuros39927en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0032164789&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume14en_HK
dc.identifier.issue9en_HK
dc.identifier.spage879en_HK
dc.identifier.epage893en_HK
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridWong, SC=24323361400en_HK
dc.identifier.scopusauthoridLeung, AYT=7403012564en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats