File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Numerical solution for elastic inclusion problems by domain integral equation with integration by means of radial basis functions

TitleNumerical solution for elastic inclusion problems by domain integral equation with integration by means of radial basis functions
Authors
KeywordsDomain integral equation
Inclusion problems
Infinite domain
Radial basis functions
Issue Date2004
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/enganabound
Citation
Engineering Analysis With Boundary Elements, 2004, v. 28 n. 6, p. 623-632 How to Cite?
AbstractThe unknown strains in the inclusions are expressed in terms of a series of radial basis functions (RBF) and polynomials in global coordinates. Based on the radial integration method proposed by Gao [J. Appl. Mech., Trans. ASME 69 (2002) 154, Engng Anal. Bound. Elem. 26 (2002) 905], the volume integrals for the evaluation of strains can be transformed into contour integrals on the inclusion boundaries. As a result of this transformation, there is no need to discretize the inclusions into finite elements. For the determination of the strains, collocation points are distributed at the interior of the inclusions to form a system of linear equations. Numerical results are compared with available analytical solutions and those based on a finite element discretization of the volume integrals. © 2003 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/70674
ISSN
2023 Impact Factor: 4.2
2023 SCImago Journal Rankings: 0.729
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorDong, CYen_HK
dc.contributor.authorLo, SHen_HK
dc.contributor.authorCheung, YKen_HK
dc.date.accessioned2010-09-06T06:25:05Z-
dc.date.available2010-09-06T06:25:05Z-
dc.date.issued2004en_HK
dc.identifier.citationEngineering Analysis With Boundary Elements, 2004, v. 28 n. 6, p. 623-632en_HK
dc.identifier.issn0955-7997en_HK
dc.identifier.urihttp://hdl.handle.net/10722/70674-
dc.description.abstractThe unknown strains in the inclusions are expressed in terms of a series of radial basis functions (RBF) and polynomials in global coordinates. Based on the radial integration method proposed by Gao [J. Appl. Mech., Trans. ASME 69 (2002) 154, Engng Anal. Bound. Elem. 26 (2002) 905], the volume integrals for the evaluation of strains can be transformed into contour integrals on the inclusion boundaries. As a result of this transformation, there is no need to discretize the inclusions into finite elements. For the determination of the strains, collocation points are distributed at the interior of the inclusions to form a system of linear equations. Numerical results are compared with available analytical solutions and those based on a finite element discretization of the volume integrals. © 2003 Elsevier Ltd. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/enganabounden_HK
dc.relation.ispartofEngineering Analysis with Boundary Elementsen_HK
dc.subjectDomain integral equationen_HK
dc.subjectInclusion problemsen_HK
dc.subjectInfinite domainen_HK
dc.subjectRadial basis functionsen_HK
dc.titleNumerical solution for elastic inclusion problems by domain integral equation with integration by means of radial basis functionsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0955-7997&volume=28&spage=623&epage=632&date=2004&atitle=Numerical+solution+for+elastic+inclusion+problems+by+domain+integral+equation+with+integration+by+means+of+radial+basis+functionsen_HK
dc.identifier.emailLo, SH:hreclsh@hkucc.hku.hken_HK
dc.identifier.emailCheung, YK:hreccyk@hkucc.hku.hken_HK
dc.identifier.authorityLo, SH=rp00223en_HK
dc.identifier.authorityCheung, YK=rp00104en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.enganabound.2003.06.001en_HK
dc.identifier.scopuseid_2-s2.0-2342616693en_HK
dc.identifier.hkuros92901en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-2342616693&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume28en_HK
dc.identifier.issue6en_HK
dc.identifier.spage623en_HK
dc.identifier.epage632en_HK
dc.identifier.isiWOS:000221734400008-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridDong, CY=14031303000en_HK
dc.identifier.scopusauthoridLo, SH=7401542444en_HK
dc.identifier.scopusauthoridCheung, YK=7202111065en_HK
dc.identifier.issnl0955-7997-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats