File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Assessment and improvement of precise time step integration method

TitleAssessment and improvement of precise time step integration method
精細積分方法的評估與改進
Authors
KeywordsComputation accuracy (穩定性分析)
The calculation technique of matrix exponential function (矩陣指數計算)
Numerical integration (數值積分)
Numerical stability (精度分析)
Precise time step integration method (精細積分方法)
Issue Date2004
PublisherDalian Ligong Daxue (大連理工大學). The Journal's web site is located at http://www.cjcm.net/ch/index.aspx
Citation
Chinese Journal Of Computational Mechanics, 2004, v. 21 n. 6, p. 728-733 How to Cite?
計算力學學報, 2004, v. 21 n. 6, p. 728-733 How to Cite?
AbstractThe numerical stability and the computation accuracy of precise time step integration method are discussed. The precise time step integration method is conditionally stable and this time integration scheme has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay, but the stability conditions and the computation accuracy requirements of this time integration scheme are easy to be satisfied with the discretized structural models. And the optimum values of the truncation order L and 2-division order N are presented, and the Gauss quadrature method is used to improve the computation accuracy of precise time step integration method, so a precise time step integration method is established. The method avoids the inverse matrix calculation and the simulation of the applied loading and improves the computing efficiency, and the method is independent to the quality of the matrix [H]. If the matrix [H] is singular or nearly singular, the advantage of the method is remarkable. Finally, a numerical example verified the validity of the selections of L and N and the feasibility of improvement of precise time step integration method. 詳細分析了結構動力分析的精細積分方法的穩定性、計算精度,在此基礎上提出了對現有精細積分方法的改進策略。算例證實了本文對精細積分方法改進的科學性與可行性。
Persistent Identifierhttp://hdl.handle.net/10722/70596
ISSN
2015 SCImago Journal Rankings: 0.337
References

 

DC FieldValueLanguage
dc.contributor.authorWang, Men_HK
dc.contributor.authorAu, FTKen_HK
dc.date.accessioned2010-09-06T06:24:24Z-
dc.date.available2010-09-06T06:24:24Z-
dc.date.issued2004en_HK
dc.identifier.citationChinese Journal Of Computational Mechanics, 2004, v. 21 n. 6, p. 728-733en_HK
dc.identifier.citation計算力學學報, 2004, v. 21 n. 6, p. 728-733-
dc.identifier.issn1007-4708en_HK
dc.identifier.urihttp://hdl.handle.net/10722/70596-
dc.description.abstractThe numerical stability and the computation accuracy of precise time step integration method are discussed. The precise time step integration method is conditionally stable and this time integration scheme has inherent algorithmic damping, algorithmic period error and algorithmic amplitude decay, but the stability conditions and the computation accuracy requirements of this time integration scheme are easy to be satisfied with the discretized structural models. And the optimum values of the truncation order L and 2-division order N are presented, and the Gauss quadrature method is used to improve the computation accuracy of precise time step integration method, so a precise time step integration method is established. The method avoids the inverse matrix calculation and the simulation of the applied loading and improves the computing efficiency, and the method is independent to the quality of the matrix [H]. If the matrix [H] is singular or nearly singular, the advantage of the method is remarkable. Finally, a numerical example verified the validity of the selections of L and N and the feasibility of improvement of precise time step integration method. 詳細分析了結構動力分析的精細積分方法的穩定性、計算精度,在此基礎上提出了對現有精細積分方法的改進策略。算例證實了本文對精細積分方法改進的科學性與可行性。en_HK
dc.languagechien_HK
dc.publisherDalian Ligong Daxue (大連理工大學). The Journal's web site is located at http://www.cjcm.net/ch/index.aspxen_HK
dc.relation.ispartofChinese Journal of Computational Mechanicsen_HK
dc.relation.ispartof計算力學學報-
dc.subjectComputation accuracy (穩定性分析)en_HK
dc.subjectThe calculation technique of matrix exponential function (矩陣指數計算)en_HK
dc.subjectNumerical integration (數值積分)en_HK
dc.subjectNumerical stability (精度分析)en_HK
dc.subjectPrecise time step integration method (精細積分方法)en_HK
dc.titleAssessment and improvement of precise time step integration methoden_HK
dc.title精細積分方法的評估與改進-
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0045-7949&volume=84&spage=779&epage=786&date=2006&atitle=Assessment+and+improvement+of+precise+time+step+integration+methoden_HK
dc.identifier.emailAu, FTK:francis.au@hku.hken_HK
dc.identifier.authorityAu, FTK=rp00083en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-12444257364en_HK
dc.identifier.hkuros102251-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-12444257364&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume21en_HK
dc.identifier.issue6en_HK
dc.identifier.spage728en_HK
dc.identifier.epage733en_HK
dc.identifier.scopusauthoridWang, M=7407801843en_HK
dc.identifier.scopusauthoridAu, FTK=7005204072en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats