File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Trans-phonon effects in ultra-fast nanodevices
  • Basic View
  • Metadata View
  • XML View
TitleTrans-phonon effects in ultra-fast nanodevices
 
AuthorsXu, ZP5
Zheng, QS5
Jiang, Q2
Ma, CC1
Zhao, Y3
Chen, GH1
Gao, H4
Ren, GX5
 
Issue Date2008
 
PublisherInstitute of Physics Publishing. The Journal's web site is located at http://www.iop.org/journals/nano
 
CitationNanotechnology, 2008, v. 19 n. 25, p. 255705 [How to Cite?]
DOI: http://dx.doi.org/10.1088/0957-4484/19/25/255705
 
AbstractWe report a novel phenomenon in carbon nanotube based ultra-fast mechanical devices, the trans-phonon effect, which resembles the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dragging force on the sliding tube, and multiple phonon barriers are encountered as the intertube sliding velocity reaches critical values. It is found that the trans-phonon effects can be tuned by applying geometric constraints or varying chirality combinations of the nanotubes. © IOP Publishing Ltd.
 
ISSN0957-4484
2012 Impact Factor: 3.842
2012 SCImago Journal Rankings: 1.474
 
DOIhttp://dx.doi.org/10.1088/0957-4484/19/25/255705
 
ISI Accession Number IDWOS:000256455800023
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorXu, ZP
 
dc.contributor.authorZheng, QS
 
dc.contributor.authorJiang, Q
 
dc.contributor.authorMa, CC
 
dc.contributor.authorZhao, Y
 
dc.contributor.authorChen, GH
 
dc.contributor.authorGao, H
 
dc.contributor.authorRen, GX
 
dc.date.accessioned2010-09-06T06:17:46Z
 
dc.date.available2010-09-06T06:17:46Z
 
dc.date.issued2008
 
dc.description.abstractWe report a novel phenomenon in carbon nanotube based ultra-fast mechanical devices, the trans-phonon effect, which resembles the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dragging force on the sliding tube, and multiple phonon barriers are encountered as the intertube sliding velocity reaches critical values. It is found that the trans-phonon effects can be tuned by applying geometric constraints or varying chirality combinations of the nanotubes. © IOP Publishing Ltd.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationNanotechnology, 2008, v. 19 n. 25, p. 255705 [How to Cite?]
DOI: http://dx.doi.org/10.1088/0957-4484/19/25/255705
 
dc.identifier.doihttp://dx.doi.org/10.1088/0957-4484/19/25/255705
 
dc.identifier.epage255705
 
dc.identifier.hkuros148203
 
dc.identifier.isiWOS:000256455800023
 
dc.identifier.issn0957-4484
2012 Impact Factor: 3.842
2012 SCImago Journal Rankings: 1.474
 
dc.identifier.issue25
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-44949170584
 
dc.identifier.spage255705
 
dc.identifier.urihttp://hdl.handle.net/10722/69890
 
dc.identifier.volume19
 
dc.languageeng
 
dc.publisherInstitute of Physics Publishing. The Journal's web site is located at http://www.iop.org/journals/nano
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofNanotechnology
 
dc.relation.referencesReferences in Scopus
 
dc.titleTrans-phonon effects in ultra-fast nanodevices
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Xu, ZP</contributor.author>
<contributor.author>Zheng, QS</contributor.author>
<contributor.author>Jiang, Q</contributor.author>
<contributor.author>Ma, CC</contributor.author>
<contributor.author>Zhao, Y</contributor.author>
<contributor.author>Chen, GH</contributor.author>
<contributor.author>Gao, H</contributor.author>
<contributor.author>Ren, GX</contributor.author>
<date.accessioned>2010-09-06T06:17:46Z</date.accessioned>
<date.available>2010-09-06T06:17:46Z</date.available>
<date.issued>2008</date.issued>
<identifier.citation>Nanotechnology, 2008, v. 19 n. 25, p. 255705</identifier.citation>
<identifier.issn>0957-4484</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/69890</identifier.uri>
<description.abstract>We report a novel phenomenon in carbon nanotube based ultra-fast mechanical devices, the trans-phonon effect, which resembles the transonic effects in aerodynamics. It is caused by dissipative resonance of nanotube phonons similar to the radial breathing mode, and subsequent drastic surge of the dragging force on the sliding tube, and multiple phonon barriers are encountered as the intertube sliding velocity reaches critical values. It is found that the trans-phonon effects can be tuned by applying geometric constraints or varying chirality combinations of the nanotubes. &#169; IOP Publishing Ltd.</description.abstract>
<language>eng</language>
<publisher>Institute of Physics Publishing. The Journal&apos;s web site is located at http://www.iop.org/journals/nano</publisher>
<relation.ispartof>Nanotechnology</relation.ispartof>
<title>Trans-phonon effects in ultra-fast nanodevices</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=0957-4484&amp;volume=19&amp;spage=255705&amp;epage=1 &amp;date=2008&amp;atitle=Trans-phonon+Effects+in+Ultra-fast+Nanodevices+</identifier.openurl>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1088/0957-4484/19/25/255705</identifier.doi>
<identifier.scopus>eid_2-s2.0-44949170584</identifier.scopus>
<identifier.hkuros>148203</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-44949170584&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>19</identifier.volume>
<identifier.issue>25</identifier.issue>
<identifier.spage>255705</identifier.spage>
<identifier.epage>255705</identifier.epage>
<identifier.isi>WOS:000256455800023</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. University of California, Riverside
  3. Nanyang Technological University
  4. Brown University
  5. Tsinghua University