File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis

TitleMolecular diagnosis of human cancer type by gene expression profiles and independent component analysis
Authors
KeywordsBiomarkers identification
Cancer
Diagnosis
ICA
Microarray
Pattern
Issue Date2005
PublisherNature Publishing Group. The Journal's web site is located at http://www.nature.com/ejhg
Citation
European Journal Of Human Genetics, 2005, v. 13 n. 12, p. 1303-1311 How to Cite?
AbstractThe precise diagnosis of cancer type based on microarray data is of particular importance and is also a challenging task. We have devised a novel pattern recognition procedure based on independent component analysis (ICA). Different from the conventional cancer classification methods, which are limited in their clinical applicability of cancer diagnosis, our method extracts explicitly, by ICA algorithm, a set of specific diagnostic patterns of normal and tumor tissues corresponding to a set of biomarkers for clinical use. We validated our procedure with the colon and prostate cancer data sets and achieved good diagnosis (>90%) on the data sets studied here. This technique is also suitable for the identification of diagnostic expression patterns for other human cancers and demonstrates the feasibility of simple and accurate molecular cancer diagnostics for clinical implementation. © 2005 Nature Publishing Group All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/68509
ISSN
2023 Impact Factor: 3.7
2023 SCImago Journal Rankings: 1.538
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorZhang, XWen_HK
dc.contributor.authorYap, YLen_HK
dc.contributor.authorWei, Den_HK
dc.contributor.authorChen, Fen_HK
dc.contributor.authorDanchin, Aen_HK
dc.date.accessioned2010-09-06T06:05:14Z-
dc.date.available2010-09-06T06:05:14Z-
dc.date.issued2005en_HK
dc.identifier.citationEuropean Journal Of Human Genetics, 2005, v. 13 n. 12, p. 1303-1311en_HK
dc.identifier.issn1018-4813en_HK
dc.identifier.urihttp://hdl.handle.net/10722/68509-
dc.description.abstractThe precise diagnosis of cancer type based on microarray data is of particular importance and is also a challenging task. We have devised a novel pattern recognition procedure based on independent component analysis (ICA). Different from the conventional cancer classification methods, which are limited in their clinical applicability of cancer diagnosis, our method extracts explicitly, by ICA algorithm, a set of specific diagnostic patterns of normal and tumor tissues corresponding to a set of biomarkers for clinical use. We validated our procedure with the colon and prostate cancer data sets and achieved good diagnosis (>90%) on the data sets studied here. This technique is also suitable for the identification of diagnostic expression patterns for other human cancers and demonstrates the feasibility of simple and accurate molecular cancer diagnostics for clinical implementation. © 2005 Nature Publishing Group All rights reserved.en_HK
dc.languageengen_HK
dc.publisherNature Publishing Group. The Journal's web site is located at http://www.nature.com/ejhgen_HK
dc.relation.ispartofEuropean Journal of Human Geneticsen_HK
dc.subjectBiomarkers identificationen_HK
dc.subjectCanceren_HK
dc.subjectDiagnosisen_HK
dc.subjectICAen_HK
dc.subjectMicroarrayen_HK
dc.subjectPatternen_HK
dc.titleMolecular diagnosis of human cancer type by gene expression profiles and independent component analysisen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1018-4813&volume=13&spage=1303&epage=1311&date=2005&atitle=Molecular+diagnosis+of+human+cancer+type+by+gene+expression+profiles+and+independent+component+analysisen_HK
dc.identifier.emailChen, F: sfchen@hku.hken_HK
dc.identifier.authorityChen, F=rp00672en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/sj.ejhg.5201495en_HK
dc.identifier.pmid16205741en_HK
dc.identifier.scopuseid_2-s2.0-30744439853en_HK
dc.identifier.hkuros122435en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-30744439853&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume13en_HK
dc.identifier.issue12en_HK
dc.identifier.spage1303en_HK
dc.identifier.epage1311en_HK
dc.identifier.isiWOS:000233464200010-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridZhang, XW=16044335800en_HK
dc.identifier.scopusauthoridYap, YL=7005551975en_HK
dc.identifier.scopusauthoridWei, D=24472144100en_HK
dc.identifier.scopusauthoridChen, F=7404907980en_HK
dc.identifier.scopusauthoridDanchin, A=7103235597en_HK
dc.identifier.citeulike341257-
dc.identifier.issnl1018-4813-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats