File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)

Article: Mechanical properties, bioactivity and corrosion resistance of oxygen and sodium plasma treated nickel titanium shape memory alloy

TitleMechanical properties, bioactivity and corrosion resistance of oxygen and sodium plasma treated nickel titanium shape memory alloy
Authors
KeywordsBioactivity
Corrosion resistance
Mechanical properties
Nickel titanium
Plasma immersion ion implantation
Issue Date2007
PublisherElsevier SA. The Journal's web site is located at http://www.elsevier.com/locate/surfcoat
Citation
Surface And Coatings Technology, 2007, v. 202 n. 4-7, p. 1308-1312 How to Cite?
AbstractNickel titanium (NiTi) shape memory alloy is a unique material displaying the shape memory effect and superelastic property making it attractive to the orthopedic field. However, with its high nickel content of ∼ 50%, there is concern on health and safety when this material is implanted inside the human body for a prolonged period of time as toxic nickel ions may leach into the body due to corrosion under physiological environment. Previous work demonstrated that the corrosion resistance of this material could be enhanced by implanting a packed oxide layer on the substrate surface using oxygen plasma immersion ion implantation (PIII). The present study aims at improving its bioactivity by further implanting sodium ions into the modified surface using PIII. The chemical composition of the modified surface is characterized by X-ray photoelectron spectroscopy (XPS). Simulated body fluid (SBF) immersion tests for 21 days indicate that implantation of sodium successfully enhances the accumulation of calcium/phosphorus-rich deposits on the modified surface. Anodic polarization scans suggest that sodium PIII does not affect the corrosion resistance of the oxygen plasma implanted surface. Three-point bending test reveals changes in the bulk mechanical property after PIII. However, superelasticity can be retained in the implanted NiTi materials. Differential scanning calorimetry (DSC) suggests a change in the transition temperature of the substrate which likely causes the change in mechanical property. In conclusion, oxygen and sodium PIII can enhance the bioactivity and corrosion resistance of NiTi, but care must be exercised because this treatment may change the bulk mechanical property. © 2007 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/68215
ISSN
2023 Impact Factor: 5.3
2023 SCImago Journal Rankings: 1.034
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChan, YLen_HK
dc.contributor.authorWu, SLen_HK
dc.contributor.authorLiu, XMen_HK
dc.contributor.authorChu, PKen_HK
dc.contributor.authorYeung, KWKen_HK
dc.contributor.authorLu, WWen_HK
dc.contributor.authorNgan, AHWen_HK
dc.contributor.authorLuk, KDKen_HK
dc.contributor.authorChan, Den_HK
dc.contributor.authorCheung, KMCen_HK
dc.date.accessioned2010-09-06T06:02:27Z-
dc.date.available2010-09-06T06:02:27Z-
dc.date.issued2007en_HK
dc.identifier.citationSurface And Coatings Technology, 2007, v. 202 n. 4-7, p. 1308-1312en_HK
dc.identifier.issn0257-8972en_HK
dc.identifier.urihttp://hdl.handle.net/10722/68215-
dc.description.abstractNickel titanium (NiTi) shape memory alloy is a unique material displaying the shape memory effect and superelastic property making it attractive to the orthopedic field. However, with its high nickel content of ∼ 50%, there is concern on health and safety when this material is implanted inside the human body for a prolonged period of time as toxic nickel ions may leach into the body due to corrosion under physiological environment. Previous work demonstrated that the corrosion resistance of this material could be enhanced by implanting a packed oxide layer on the substrate surface using oxygen plasma immersion ion implantation (PIII). The present study aims at improving its bioactivity by further implanting sodium ions into the modified surface using PIII. The chemical composition of the modified surface is characterized by X-ray photoelectron spectroscopy (XPS). Simulated body fluid (SBF) immersion tests for 21 days indicate that implantation of sodium successfully enhances the accumulation of calcium/phosphorus-rich deposits on the modified surface. Anodic polarization scans suggest that sodium PIII does not affect the corrosion resistance of the oxygen plasma implanted surface. Three-point bending test reveals changes in the bulk mechanical property after PIII. However, superelasticity can be retained in the implanted NiTi materials. Differential scanning calorimetry (DSC) suggests a change in the transition temperature of the substrate which likely causes the change in mechanical property. In conclusion, oxygen and sodium PIII can enhance the bioactivity and corrosion resistance of NiTi, but care must be exercised because this treatment may change the bulk mechanical property. © 2007 Elsevier B.V. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier SA. The Journal's web site is located at http://www.elsevier.com/locate/surfcoaten_HK
dc.relation.ispartofSurface and Coatings Technologyen_HK
dc.subjectBioactivityen_HK
dc.subjectCorrosion resistanceen_HK
dc.subjectMechanical propertiesen_HK
dc.subjectNickel titaniumen_HK
dc.subjectPlasma immersion ion implantationen_HK
dc.titleMechanical properties, bioactivity and corrosion resistance of oxygen and sodium plasma treated nickel titanium shape memory alloyen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0257-8972&volume=202&spage=1308&epage=1312&date=2007&atitle=Mechanical+properties,+bioactivity+and+corrosion+resistance+of+oxygen+and+sodium+plasma+treated+nickel+titanium+shape+memory+alloyen_HK
dc.identifier.emailYeung, KWK:wkkyeung@hkucc.hku.hken_HK
dc.identifier.emailLu, WW:wwlu@hku.hken_HK
dc.identifier.emailNgan, AHW:hwngan@hkucc.hku.hken_HK
dc.identifier.emailLuk, KDK:hcm21000@hku.hken_HK
dc.identifier.emailChan, D:chand@hkucc.hku.hken_HK
dc.identifier.emailCheung, KMC:cheungmc@hku.hken_HK
dc.identifier.authorityYeung, KWK=rp00309en_HK
dc.identifier.authorityLu, WW=rp00411en_HK
dc.identifier.authorityNgan, AHW=rp00225en_HK
dc.identifier.authorityLuk, KDK=rp00333en_HK
dc.identifier.authorityChan, D=rp00540en_HK
dc.identifier.authorityCheung, KMC=rp00387en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.surfcoat.2007.07.092en_HK
dc.identifier.scopuseid_2-s2.0-36048959241en_HK
dc.identifier.hkuros145961en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-36048959241&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume202en_HK
dc.identifier.issue4-7en_HK
dc.identifier.spage1308en_HK
dc.identifier.epage1312en_HK
dc.identifier.isiWOS:000251618900127-
dc.publisher.placeSwitzerlanden_HK
dc.identifier.scopusauthoridChan, YL=8250546500en_HK
dc.identifier.scopusauthoridWu, SL=15125218800en_HK
dc.identifier.scopusauthoridLiu, XM=8408205200en_HK
dc.identifier.scopusauthoridChu, PK=36040705700en_HK
dc.identifier.scopusauthoridYeung, KWK=13309584700en_HK
dc.identifier.scopusauthoridLu, WW=7404215221en_HK
dc.identifier.scopusauthoridNgan, AHW=7006827202en_HK
dc.identifier.scopusauthoridLuk, KDK=7201921573en_HK
dc.identifier.scopusauthoridChan, D=7402216545en_HK
dc.identifier.scopusauthoridCheung, KMC=7402406754en_HK
dc.identifier.issnl0257-8972-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats