File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.insmatheco.2009.12.002
- Scopus: eid_2-s2.0-77949261469
- WOS: WOS:000276698700011
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model
Title | Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||||
Keywords | Asymptotics Constant investment strategy Lévy process Portfolio optimization Regular variation Ruin probability Uniformity | ||||||||||
Issue Date | 2010 | ||||||||||
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/ime | ||||||||||
Citation | Insurance: Mathematics And Economics, 2010, v. 46 n. 2, p. 362-370 How to Cite? | ||||||||||
Abstract | Consider an insurer who is allowed to make risk-free and risky investments. The price process of the investment portfolio is described as a geometric Lévy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of Pareto type, we obtain a simple asymptotic formula which holds uniformly for all time horizons. The same asymptotic formula holds for the finite-time and infinite-time ruin probabilities. Restricting our attention to the so-called constant investment strategy, we show how the insurer adjusts his investment portfolio to maximize the expected terminal wealth subject to a constraint on the ruin probability. © 2009 Elsevier B.V. All rights reserved. | ||||||||||
Persistent Identifier | http://hdl.handle.net/10722/65608 | ||||||||||
ISSN | 2023 Impact Factor: 1.9 2023 SCImago Journal Rankings: 1.113 | ||||||||||
ISI Accession Number ID |
Funding Information: The authors would like to thank the anonymous referee for his/her careful reading and useful comments. Qihe Tang acknowledges support of the 2008 Old Gold Summer Fellowship from the University of Iowa, Guojing Wang acknowledges supports of the NSF of Jiangsu Province (KB2008155) and the Research Fund for the Doctorial Program of Higher Education, and Kam C. Yuen acknowledges support of a research grant from the University of Hong Kong. | ||||||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tang, Q | en_HK |
dc.contributor.author | Wang, G | en_HK |
dc.contributor.author | Yuen, KC | en_HK |
dc.date.accessioned | 2010-09-06T01:47:33Z | - |
dc.date.available | 2010-09-06T01:47:33Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Insurance: Mathematics And Economics, 2010, v. 46 n. 2, p. 362-370 | en_HK |
dc.identifier.issn | 0167-6687 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/65608 | - |
dc.description.abstract | Consider an insurer who is allowed to make risk-free and risky investments. The price process of the investment portfolio is described as a geometric Lévy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of Pareto type, we obtain a simple asymptotic formula which holds uniformly for all time horizons. The same asymptotic formula holds for the finite-time and infinite-time ruin probabilities. Restricting our attention to the so-called constant investment strategy, we show how the insurer adjusts his investment portfolio to maximize the expected terminal wealth subject to a constraint on the ruin probability. © 2009 Elsevier B.V. All rights reserved. | en_HK |
dc.language | eng | - |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/ime | en_HK |
dc.relation.ispartof | Insurance: Mathematics and Economics | en_HK |
dc.rights | Insurance: Mathematics and Economics. Copyright © Elsevier BV. | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Asymptotics | en_HK |
dc.subject | Constant investment strategy | en_HK |
dc.subject | Lévy process | en_HK |
dc.subject | Portfolio optimization | en_HK |
dc.subject | Regular variation | en_HK |
dc.subject | Ruin probability | en_HK |
dc.subject | Uniformity | en_HK |
dc.title | Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0167-6687&volume=46&issue=2&spage=362&epage=370&date=2010&atitle=Uniform+tail+asymptotics+for+the+stochastic+present+value+of+aggregate+claims+in+the+renewal+risk+model | - |
dc.identifier.email | Yuen, KC: kcyuen@hku.hk | en_HK |
dc.identifier.authority | Yuen, KC=rp00836 | en_HK |
dc.description.nature | postprint | - |
dc.identifier.doi | 10.1016/j.insmatheco.2009.12.002 | en_HK |
dc.identifier.scopus | eid_2-s2.0-77949261469 | en_HK |
dc.identifier.hkuros | 170602 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77949261469&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 46 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 362 | en_HK |
dc.identifier.epage | 370 | en_HK |
dc.identifier.eissn | 1873-5959 | - |
dc.identifier.isi | WOS:000276698700011 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Tang, Q=7201632128 | en_HK |
dc.identifier.scopusauthorid | Wang, G=7407152599 | en_HK |
dc.identifier.scopusauthorid | Yuen, KC=7202333703 | en_HK |
dc.identifier.citeulike | 6474681 | - |
dc.identifier.issnl | 0167-6687 | - |