File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/biomet/asn041
- Scopus: eid_2-s2.0-57249114756
- WOS: WOS:000261279900009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On the asymptotics of marginal regression splines with longitudinal data
Title | On the asymptotics of marginal regression splines with longitudinal data | ||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||
Keywords | Asymptotic bias B-spline Generalized estimating equation Generalized linear model Least squares Longitudinal data | ||||||||
Issue Date | 2008 | ||||||||
Publisher | Oxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/ | ||||||||
Citation | Biometrika, 2008, v. 95 n. 4, p. 907-917 How to Cite? | ||||||||
Abstract | There have been studies on how the asymptotic efficiency of a nonparametric function estimator depends on the handling of the within-cluster correlation when nonparametric regression models are used on longitudinal or cluster data. In particular, methods based on smoothing splines and local polynomial kernels exhibit different behaviour. We show that the generalized estimation equations based on weighted least squares regression splines for the nonparametric function have an interesting property: the asymptotic bias of the estimator does not depend on the working correlation matrix, but the asymptotic variance, and therefore the mean squared error, is minimized when the true correlation structure is specified. This property of the asymptotic bias distinguishes regression splines from smoothing splines. © 2008 Biometrika Trust. | ||||||||
Persistent Identifier | http://hdl.handle.net/10722/59857 | ||||||||
ISSN | 2023 Impact Factor: 2.4 2023 SCImago Journal Rankings: 3.358 | ||||||||
ISI Accession Number ID |
Funding Information: The research was partially supported by grants from the Hong Kong Research Grant Council, the National Natural Science Foundation of China and the U.S. National Science Foundation. The authors thank an associate editor and a referee for their helpful comments and suggestions on an earlier draft of the paper. | ||||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhu, Z | en_HK |
dc.contributor.author | Fung, WK | en_HK |
dc.contributor.author | He, X | en_HK |
dc.date.accessioned | 2010-05-31T03:58:53Z | - |
dc.date.available | 2010-05-31T03:58:53Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Biometrika, 2008, v. 95 n. 4, p. 907-917 | en_HK |
dc.identifier.issn | 0006-3444 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/59857 | - |
dc.description.abstract | There have been studies on how the asymptotic efficiency of a nonparametric function estimator depends on the handling of the within-cluster correlation when nonparametric regression models are used on longitudinal or cluster data. In particular, methods based on smoothing splines and local polynomial kernels exhibit different behaviour. We show that the generalized estimation equations based on weighted least squares regression splines for the nonparametric function have an interesting property: the asymptotic bias of the estimator does not depend on the working correlation matrix, but the asymptotic variance, and therefore the mean squared error, is minimized when the true correlation structure is specified. This property of the asymptotic bias distinguishes regression splines from smoothing splines. © 2008 Biometrika Trust. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Oxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/ | en_HK |
dc.relation.ispartof | Biometrika | en_HK |
dc.rights | Biometrika. Copyright © Oxford University Press. | en_HK |
dc.subject | Asymptotic bias | en_HK |
dc.subject | B-spline | en_HK |
dc.subject | Generalized estimating equation | en_HK |
dc.subject | Generalized linear model | en_HK |
dc.subject | Least squares | en_HK |
dc.subject | Longitudinal data | en_HK |
dc.title | On the asymptotics of marginal regression splines with longitudinal data | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0006-3444&volume=95&issue=4&spage=907&epage=917&date=2008&atitle=On+the+asymptotics+of+marginal+regression+splines+with+longitudinal+data | en_HK |
dc.identifier.email | Fung, WK: wingfung@hku.hk | en_HK |
dc.identifier.authority | Fung, WK=rp00696 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1093/biomet/asn041 | en_HK |
dc.identifier.scopus | eid_2-s2.0-57249114756 | en_HK |
dc.identifier.hkuros | 163121 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-57249114756&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 95 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 907 | en_HK |
dc.identifier.epage | 917 | en_HK |
dc.identifier.eissn | 1464-3510 | - |
dc.identifier.isi | WOS:000261279900009 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Zhu, Z=23487505000 | en_HK |
dc.identifier.scopusauthorid | Fung, WK=13310399400 | en_HK |
dc.identifier.scopusauthorid | He, X=7404407842 | en_HK |
dc.identifier.issnl | 0006-3444 | - |