File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci
  • Basic View
  • Metadata View
  • XML View
TitleApplication of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci
 
AuthorsSham, PC2
Cherny, SS2
Purcell, S1
 
KeywordsAssociation
Genome-wide
Heritability
Identity-by-descent (IBD)
Linkage
Quantitative genetics
Single nucleotide polymorphisms (SNP)
Variance components
 
Issue Date2009
 
PublisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0016-6707
 
CitationGenetica, 2009, v. 136 n. 2, p. 237-243 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s10709-008-9349-4
 
AbstractThe genetic analysis of quantitative traits in humans is changing as a result of the availability of whole-genome SNP data. Heritability analysis can make use of actual genetic sharing between pairs of individuals estimated from the genotype data, rather than the expected genetic sharing implied by their family relationship. This could provide more accurate heritability estimates and help to overcome the equal environment assumption. Quantitative trait locus (QTL) linkage mapping can make use of local genetic sharing inferred from very dense local genotype data from pedigree members or individuals not previously known to be related. This approach may be particularly suited for detecting loci that contain rare variants with major effect on the phenotype. Finally, whole-genome SNP data can be used to measure the genetic similarity between individuals to provide matched sets for association studies, in order to avoid spurious association from population stratification. © 2009 Springer Science+Business Media B.V.
 
ISSN0016-6707
2013 Impact Factor: 1.746
 
DOIhttp://dx.doi.org/10.1007/s10709-008-9349-4
 
ISI Accession Number IDWOS:000265818900004
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorSham, PC
 
dc.contributor.authorCherny, SS
 
dc.contributor.authorPurcell, S
 
dc.date.accessioned2010-05-31T03:56:15Z
 
dc.date.available2010-05-31T03:56:15Z
 
dc.date.issued2009
 
dc.description.abstractThe genetic analysis of quantitative traits in humans is changing as a result of the availability of whole-genome SNP data. Heritability analysis can make use of actual genetic sharing between pairs of individuals estimated from the genotype data, rather than the expected genetic sharing implied by their family relationship. This could provide more accurate heritability estimates and help to overcome the equal environment assumption. Quantitative trait locus (QTL) linkage mapping can make use of local genetic sharing inferred from very dense local genotype data from pedigree members or individuals not previously known to be related. This approach may be particularly suited for detecting loci that contain rare variants with major effect on the phenotype. Finally, whole-genome SNP data can be used to measure the genetic similarity between individuals to provide matched sets for association studies, in order to avoid spurious association from population stratification. © 2009 Springer Science+Business Media B.V.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationGenetica, 2009, v. 136 n. 2, p. 237-243 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s10709-008-9349-4
 
dc.identifier.citeulike3871463
 
dc.identifier.doihttp://dx.doi.org/10.1007/s10709-008-9349-4
 
dc.identifier.epage243
 
dc.identifier.hkuros154399
 
dc.identifier.isiWOS:000265818900004
 
dc.identifier.issn0016-6707
2013 Impact Factor: 1.746
 
dc.identifier.issue2
 
dc.identifier.openurl
 
dc.identifier.pmid19127410
 
dc.identifier.scopuseid_2-s2.0-67349285774
 
dc.identifier.spage237
 
dc.identifier.urihttp://hdl.handle.net/10722/59731
 
dc.identifier.volume136
 
dc.languageeng
 
dc.publisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0016-6707
 
dc.publisher.placeNetherlands
 
dc.relation.ispartofGenetica
 
dc.relation.referencesReferences in Scopus
 
dc.subjectAssociation
 
dc.subjectGenome-wide
 
dc.subjectHeritability
 
dc.subjectIdentity-by-descent (IBD)
 
dc.subjectLinkage
 
dc.subjectQuantitative genetics
 
dc.subjectSingle nucleotide polymorphisms (SNP)
 
dc.subjectVariance components
 
dc.titleApplication of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Sham, PC</contributor.author>
<contributor.author>Cherny, SS</contributor.author>
<contributor.author>Purcell, S</contributor.author>
<date.accessioned>2010-05-31T03:56:15Z</date.accessioned>
<date.available>2010-05-31T03:56:15Z</date.available>
<date.issued>2009</date.issued>
<identifier.citation>Genetica, 2009, v. 136 n. 2, p. 237-243</identifier.citation>
<identifier.issn>0016-6707</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/59731</identifier.uri>
<description.abstract>The genetic analysis of quantitative traits in humans is changing as a result of the availability of whole-genome SNP data. Heritability analysis can make use of actual genetic sharing between pairs of individuals estimated from the genotype data, rather than the expected genetic sharing implied by their family relationship. This could provide more accurate heritability estimates and help to overcome the equal environment assumption. Quantitative trait locus (QTL) linkage mapping can make use of local genetic sharing inferred from very dense local genotype data from pedigree members or individuals not previously known to be related. This approach may be particularly suited for detecting loci that contain rare variants with major effect on the phenotype. Finally, whole-genome SNP data can be used to measure the genetic similarity between individuals to provide matched sets for association studies, in order to avoid spurious association from population stratification. &#169; 2009 Springer Science+Business Media B.V.</description.abstract>
<language>eng</language>
<publisher>Springer Verlag Dordrecht. The Journal&apos;s web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&amp;issn=0016-6707</publisher>
<relation.ispartof>Genetica</relation.ispartof>
<subject>Association</subject>
<subject>Genome-wide</subject>
<subject>Heritability</subject>
<subject>Identity-by-descent (IBD)</subject>
<subject>Linkage</subject>
<subject>Quantitative genetics</subject>
<subject>Single nucleotide polymorphisms (SNP)</subject>
<subject>Variance components</subject>
<title>Application of genome-wide SNP data for uncovering pairwise relationships and quantitative trait loci</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=0016-6707&amp;volume=136&amp;spage=237&amp;epage=243&amp;date=2009&amp;atitle=Application+of+genome-wide+SNP+data+for+uncovering+pairwise+relationships+and+quantitative+trait+loci+</identifier.openurl>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1007/s10709-008-9349-4</identifier.doi>
<identifier.pmid>19127410</identifier.pmid>
<identifier.scopus>eid_2-s2.0-67349285774</identifier.scopus>
<identifier.hkuros>154399</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-67349285774&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>136</identifier.volume>
<identifier.issue>2</identifier.issue>
<identifier.spage>237</identifier.spage>
<identifier.epage>243</identifier.epage>
<identifier.isi>WOS:000265818900004</identifier.isi>
<publisher.place>Netherlands</publisher.place>
<identifier.citeulike>3871463</identifier.citeulike>
</item>
Author Affiliations
  1. Massachusetts General Hospital
  2. The University of Hong Kong