File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1017/S1446788708000323
- Scopus: eid_2-s2.0-56749161103
- WOS: WOS:000262919600007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On the number of sign changes of hecke eigenvalues of newforms
Title | On the number of sign changes of hecke eigenvalues of newforms | ||||
---|---|---|---|---|---|
Authors | |||||
Keywords | Hecke eigenvalues Sign changes | ||||
Issue Date | 2008 | ||||
Publisher | Australian Mathematical Society. The Journal's web site is located at http://www.austms.org.au/Publ/JAustMS/ | ||||
Citation | Journal Of The Australian Mathematical Society, 2008, v. 85 n. 1, p. 87-94 How to Cite? | ||||
Abstract | We show that, for every x exceeding some explicit bound depending only on k and N, there are at least C(k,N)x/log17x positive and negative coefficients a(n) with n ≤ x in the Fourier expansion of any non-zero cuspidal Hecke eigenform of even integral weight k ≥ 2 and squarefree level N that is a newform, where C(k,N) depends only on k and N. From this we deduce the existence of a sign change in a short interval. © 2008 Copyright 2008 Australian Mathematical Society. | ||||
Persistent Identifier | http://hdl.handle.net/10722/58959 | ||||
ISSN | 2023 Impact Factor: 0.5 2023 SCImago Journal Rankings: 0.394 | ||||
ISI Accession Number ID |
Funding Information: The third author was supported in part by ARC grant D110556431 during the preparation of this paper, | ||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kohnen, W | en_HK |
dc.contributor.author | Lau, YK | en_HK |
dc.contributor.author | Shparlinski, IE | en_HK |
dc.date.accessioned | 2010-05-31T03:40:23Z | - |
dc.date.available | 2010-05-31T03:40:23Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Journal Of The Australian Mathematical Society, 2008, v. 85 n. 1, p. 87-94 | en_HK |
dc.identifier.issn | 1446-7887 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/58959 | - |
dc.description.abstract | We show that, for every x exceeding some explicit bound depending only on k and N, there are at least C(k,N)x/log17x positive and negative coefficients a(n) with n ≤ x in the Fourier expansion of any non-zero cuspidal Hecke eigenform of even integral weight k ≥ 2 and squarefree level N that is a newform, where C(k,N) depends only on k and N. From this we deduce the existence of a sign change in a short interval. © 2008 Copyright 2008 Australian Mathematical Society. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Australian Mathematical Society. The Journal's web site is located at http://www.austms.org.au/Publ/JAustMS/ | en_HK |
dc.relation.ispartof | Journal of the Australian Mathematical Society | en_HK |
dc.rights | Journal of the Australian Mathematical Society. Copyright © Cambridge University Press. | en_HK |
dc.subject | Hecke eigenvalues | en_HK |
dc.subject | Sign changes | en_HK |
dc.title | On the number of sign changes of hecke eigenvalues of newforms | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1446-7887 &volume=85&spage=87&epage=94&date=2008&atitle=On+the+number+of+sign+changes+of+Hecke+eigenvalues+of+newforms | en_HK |
dc.identifier.email | Lau, YK:yklau@maths.hku.hk | en_HK |
dc.identifier.authority | Lau, YK=rp00722 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1017/S1446788708000323 | en_HK |
dc.identifier.scopus | eid_2-s2.0-56749161103 | en_HK |
dc.identifier.hkuros | 155619 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-56749161103&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 85 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 87 | en_HK |
dc.identifier.epage | 94 | en_HK |
dc.identifier.isi | WOS:000262919600007 | - |
dc.publisher.place | Australia | en_HK |
dc.identifier.scopusauthorid | Kohnen, W=7003954289 | en_HK |
dc.identifier.scopusauthorid | Lau, YK=35724053400 | en_HK |
dc.identifier.scopusauthorid | Shparlinski, IE=7005075576 | en_HK |
dc.identifier.issnl | 1446-7887 | - |