File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10845-008-0137-x
- Scopus: eid_2-s2.0-52349089809
- WOS: WOS:000259438300002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A cooperative coevolutionary algorithm for design of platform-based mass customized products
Title | A cooperative coevolutionary algorithm for design of platform-based mass customized products | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Keywords | Cooperative coevolutionary algorithm Mass customization Platform product customization Product platform Product variant | ||||||
Issue Date | 2008 | ||||||
Publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0956-5515 | ||||||
Citation | Journal Of Intelligent Manufacturing, 2008, v. 19 n. 5, p. 507-519 How to Cite? | ||||||
Abstract | As a new business model, mass customization (MC) intends to enable enterprises to comply with customer requirements at mass production efficiencies. A widely advocated approach to implement MC is platform product customization (PPC). In this approach, a product variant is derived from a given product platform to satisfy customer requirements. Adaptive PPC is such a PPC mode in which the given product platform has a modular architecture where customization is achieved by swapping standard modules and/or scaling modular components to formulate multiple product variants according to market segments and customer requirements. Adaptive PPC optimization includes structural configuration and parametric optimization. This paper presents a new method, namely, a cooperative coevolutionary algorithm (CCEA), to solve the two interrelated problems of structural configuration and parametric optimization in adaptive PPC. The performance of the proposed algorithm is compared with other methods through a set of computational experiments. The results show that CCEA outperforms the existing hierarchical evolutionary approaches, especially for large-scale problems tested in the experiments. From the experiments, it is also noticed that CCEA is slow to converge at the beginning of evolutionary process. This initial slow convergence property of the method improves its searching capability and ensures a high quality solution. © 2008 Springer Science+Business Media, LLC. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/58860 | ||||||
ISSN | 2023 Impact Factor: 5.9 2023 SCImago Journal Rankings: 2.071 | ||||||
ISI Accession Number ID |
Funding Information: Financial supports from NSFC(# 70629002) and HKU CRCG are gratefully acknowledged for this research. Miss Li is also grateful for the financial support made available for her exchange research at University of Bath. Authors are grateful to referees and editors for their constructive suggestions for improving this paper. | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, L | en_HK |
dc.contributor.author | Huang, GQ | en_HK |
dc.contributor.author | Newman, ST | en_HK |
dc.date.accessioned | 2010-05-31T03:38:18Z | - |
dc.date.available | 2010-05-31T03:38:18Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Journal Of Intelligent Manufacturing, 2008, v. 19 n. 5, p. 507-519 | en_HK |
dc.identifier.issn | 0956-5515 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/58860 | - |
dc.description.abstract | As a new business model, mass customization (MC) intends to enable enterprises to comply with customer requirements at mass production efficiencies. A widely advocated approach to implement MC is platform product customization (PPC). In this approach, a product variant is derived from a given product platform to satisfy customer requirements. Adaptive PPC is such a PPC mode in which the given product platform has a modular architecture where customization is achieved by swapping standard modules and/or scaling modular components to formulate multiple product variants according to market segments and customer requirements. Adaptive PPC optimization includes structural configuration and parametric optimization. This paper presents a new method, namely, a cooperative coevolutionary algorithm (CCEA), to solve the two interrelated problems of structural configuration and parametric optimization in adaptive PPC. The performance of the proposed algorithm is compared with other methods through a set of computational experiments. The results show that CCEA outperforms the existing hierarchical evolutionary approaches, especially for large-scale problems tested in the experiments. From the experiments, it is also noticed that CCEA is slow to converge at the beginning of evolutionary process. This initial slow convergence property of the method improves its searching capability and ensures a high quality solution. © 2008 Springer Science+Business Media, LLC. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0956-5515 | en_HK |
dc.relation.ispartof | Journal of Intelligent Manufacturing | en_HK |
dc.subject | Cooperative coevolutionary algorithm | en_HK |
dc.subject | Mass customization | en_HK |
dc.subject | Platform product customization | en_HK |
dc.subject | Product platform | en_HK |
dc.subject | Product variant | en_HK |
dc.title | A cooperative coevolutionary algorithm for design of platform-based mass customized products | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0956-5515&volume=19&issue=5&spage=507&epage=&date=2008&atitle=A+cooperative+coevolutionary+algorithm+for+design+of+platform-based+mass+customized+products+ | en_HK |
dc.identifier.email | Huang, GQ:gqhuang@hkucc.hku.hk | en_HK |
dc.identifier.authority | Huang, GQ=rp00118 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s10845-008-0137-x | en_HK |
dc.identifier.scopus | eid_2-s2.0-52349089809 | en_HK |
dc.identifier.hkuros | 149745 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-52349089809&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 19 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 507 | en_HK |
dc.identifier.epage | 519 | en_HK |
dc.identifier.isi | WOS:000259438300002 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Li, L=36985993400 | en_HK |
dc.identifier.scopusauthorid | Huang, GQ=7403425048 | en_HK |
dc.identifier.scopusauthorid | Newman, ST=7402545830 | en_HK |
dc.identifier.issnl | 0956-5515 | - |