File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the minimum stable commutation time for switching nonlinear systems

TitleOn the minimum stable commutation time for switching nonlinear systems
Authors
KeywordsCommutation time
Linear matrix inequality (LMI)
Nonlinear systems
Stability
Switching systems
Issue Date2009
PublisherIEEE
Citation
Ieee Transactions On Automatic Control, 2009, v. 54 n. 6, p. 1284-1289 How to Cite?
AbstractReal systems are often driven by switching reference signals which affect dynamics and/or equilibrium points. This technical note addresses the computation of upper bounds of the minimum commutation time ensuring stability for switching nonlinear systems. Specifically, we consider the cases of constant and variable equilibrium point of interest, for polynomial systems and for a class of non-polynomial systems. We hence propose upper bounds of the sought minimum commutation time by adopting homogeneous polynomial Lyapunov functions for the former case and polynomial Lyapunov functions for the latter one, which can be computed via linear matrix inequaltiy optimizations for given Lyapunov functions. © 2009 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/58782
ISSN
2015 Impact Factor: 2.777
2015 SCImago Journal Rankings: 4.238
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChesi, Gen_HK
dc.date.accessioned2010-05-31T03:36:49Z-
dc.date.available2010-05-31T03:36:49Z-
dc.date.issued2009en_HK
dc.identifier.citationIeee Transactions On Automatic Control, 2009, v. 54 n. 6, p. 1284-1289en_HK
dc.identifier.issn0018-9286en_HK
dc.identifier.urihttp://hdl.handle.net/10722/58782-
dc.description.abstractReal systems are often driven by switching reference signals which affect dynamics and/or equilibrium points. This technical note addresses the computation of upper bounds of the minimum commutation time ensuring stability for switching nonlinear systems. Specifically, we consider the cases of constant and variable equilibrium point of interest, for polynomial systems and for a class of non-polynomial systems. We hence propose upper bounds of the sought minimum commutation time by adopting homogeneous polynomial Lyapunov functions for the former case and polynomial Lyapunov functions for the latter one, which can be computed via linear matrix inequaltiy optimizations for given Lyapunov functions. © 2009 IEEE.en_HK
dc.languageengen_HK
dc.publisherIEEEen_HK
dc.relation.ispartofIEEE Transactions on Automatic Controlen_HK
dc.rights©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectCommutation timeen_HK
dc.subjectLinear matrix inequality (LMI)en_HK
dc.subjectNonlinear systemsen_HK
dc.subjectStabilityen_HK
dc.subjectSwitching systemsen_HK
dc.titleOn the minimum stable commutation time for switching nonlinear systemsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9286&volume=54&spage=1284&epage=1289&date=2009&atitle=On+the+minimum+stable+commutation+time+for+switching+nonlinear+systemsen_HK
dc.identifier.emailChesi, G:chesi@eee.hku.hken_HK
dc.identifier.authorityChesi, G=rp00100en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TAC.2009.2013054en_HK
dc.identifier.scopuseid_2-s2.0-67649592750en_HK
dc.identifier.hkuros156195en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-67649592750&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume54en_HK
dc.identifier.issue6en_HK
dc.identifier.spage1284en_HK
dc.identifier.epage1289en_HK
dc.identifier.isiWOS:000267064000009-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChesi, G=7006328614en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats