File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jelekin.2008.09.007
- Scopus: eid_2-s2.0-71349088619
- PMID: 19027325
- WOS: WOS:000273621100013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Time-dependent power spectral density estimation of surface electromyography during isometric muscle contraction: Methods and comparisons
Title | Time-dependent power spectral density estimation of surface electromyography during isometric muscle contraction: Methods and comparisons | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Keywords | Fatigue analysis Isometric muscle contraction PSD estimation Surface EMG Time-frequency analysis | ||||||
Issue Date | 2010 | ||||||
Publisher | Elsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jelekin | ||||||
Citation | Journal Of Electromyography And Kinesiology, 2010, v. 20 n. 1, p. 89-101 How to Cite? | ||||||
Abstract | This paper studies the time-dependent power spectral density (PSD) estimation of nonstationary surface electromyography (SEMG) signals and its application to fatigue analysis during isometric muscle contraction. The conventional time-dependent PSD estimation methods exhibit large variabilities in estimating the instantaneous SEMG parameters so that they often fail to identify the changing patterns of short-period SEMG signals and gauge the extent of fatigue in specific muscle groups. To address this problem, a time-varying autoregressive (TVAR) model is proposed in this paper to describe the SEMG signal, and then the recursive least-squares (RLS) and basis function expansion (BFE) methods are used to estimate the model coefficients and the time-dependent PSD. The instantaneous parameters extracted from the PSD estimation are evaluated and compared in terms of reliability, accuracy, and complexity. Experimental results on synthesized and real SEMG data show that the proposed TVAR-model-based PSD estimators can achieve more stable and precise instantaneous parameter estimation than conventional methods. © 2008. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/58749 | ||||||
ISSN | 2023 Impact Factor: 2.0 2023 SCImago Journal Rankings: 0.825 | ||||||
ISI Accession Number ID |
Funding Information: This work was partially supported by grants from the Research Grants Council of the Hong Kong SAR, China (GRP 712408E) and S.K. Yee Medical Foundation (207210/203210). | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, ZG | en_HK |
dc.contributor.author | Liu, HT | en_HK |
dc.contributor.author | Chan, SC | en_HK |
dc.contributor.author | Luk, KDK | en_HK |
dc.contributor.author | Hu, Y | en_HK |
dc.date.accessioned | 2010-05-31T03:36:14Z | - |
dc.date.available | 2010-05-31T03:36:14Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Journal Of Electromyography And Kinesiology, 2010, v. 20 n. 1, p. 89-101 | en_HK |
dc.identifier.issn | 1050-6411 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/58749 | - |
dc.description.abstract | This paper studies the time-dependent power spectral density (PSD) estimation of nonstationary surface electromyography (SEMG) signals and its application to fatigue analysis during isometric muscle contraction. The conventional time-dependent PSD estimation methods exhibit large variabilities in estimating the instantaneous SEMG parameters so that they often fail to identify the changing patterns of short-period SEMG signals and gauge the extent of fatigue in specific muscle groups. To address this problem, a time-varying autoregressive (TVAR) model is proposed in this paper to describe the SEMG signal, and then the recursive least-squares (RLS) and basis function expansion (BFE) methods are used to estimate the model coefficients and the time-dependent PSD. The instantaneous parameters extracted from the PSD estimation are evaluated and compared in terms of reliability, accuracy, and complexity. Experimental results on synthesized and real SEMG data show that the proposed TVAR-model-based PSD estimators can achieve more stable and precise instantaneous parameter estimation than conventional methods. © 2008. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Elsevier Ltd. The Journal's web site is located at http://www.elsevier.com/locate/jelekin | en_HK |
dc.relation.ispartof | Journal of Electromyography and Kinesiology | en_HK |
dc.subject | Fatigue analysis | en_HK |
dc.subject | Isometric muscle contraction | en_HK |
dc.subject | PSD estimation | en_HK |
dc.subject | Surface EMG | en_HK |
dc.subject | Time-frequency analysis | en_HK |
dc.subject.mesh | Algorithms | - |
dc.subject.mesh | Back - physiology | - |
dc.subject.mesh | Electromyography - methods | - |
dc.subject.mesh | Isometric Contraction - physiology | - |
dc.subject.mesh | Muscle, Skeletal - physiology | - |
dc.title | Time-dependent power spectral density estimation of surface electromyography during isometric muscle contraction: Methods and comparisons | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1050-6411&volume=20&issue=1&spage=89&epage=101&date=2010&atitle=Time-dependent+power+spectral+density+estimation+of+surface+electromyography+during+isometric+muscle+contraction:+methods+and+comparisons | - |
dc.identifier.email | Zhang, ZG:zgzhang@eee.hku.hk | en_HK |
dc.identifier.email | Chan, SC:scchan@eee.hku.hk | en_HK |
dc.identifier.email | Luk, KDK:hcm21000@hku.hk | en_HK |
dc.identifier.email | Hu, Y:yhud@hku.hk | en_HK |
dc.identifier.authority | Zhang, ZG=rp01565 | en_HK |
dc.identifier.authority | Chan, SC=rp00094 | en_HK |
dc.identifier.authority | Luk, KDK=rp00333 | en_HK |
dc.identifier.authority | Hu, Y=rp00432 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jelekin.2008.09.007 | en_HK |
dc.identifier.pmid | 19027325 | - |
dc.identifier.scopus | eid_2-s2.0-71349088619 | en_HK |
dc.identifier.hkuros | 180200 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-71349088619&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 20 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 89 | en_HK |
dc.identifier.epage | 101 | en_HK |
dc.identifier.isi | WOS:000273621100013 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Zhang, ZG=8597618700 | en_HK |
dc.identifier.scopusauthorid | Liu, HT=26643490700 | en_HK |
dc.identifier.scopusauthorid | Chan, SC=13310287100 | en_HK |
dc.identifier.scopusauthorid | Luk, KDK=7201921573 | en_HK |
dc.identifier.scopusauthorid | Hu, Y=7407116091 | en_HK |
dc.identifier.issnl | 1050-6411 | - |