File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the precise integration methods based on Padé approximations

TitleOn the precise integration methods based on Padé approximations
Authors
KeywordsGeneralized Padé approximation
Matrix exponential function
Numerical integration
Numerical stability
Structural dynamics
Unconditional stability
Issue Date2009
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstruc
Citation
Computers And Structures, 2009, v. 87 n. 5-6, p. 380-390 How to Cite?
AbstractThe precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can give precise numerical results approaching exact solutions at the integration points, but it is conditionally stable. By combining Padé approximation and the generalized Padé approximation of the matrix exponential function in precise integration, and by using three different types of quadrature formulae, a new generalized family of precise time step integration methods is developed to achieve unconditional stability and arbitrary order of accuracy. Numerical studies indicate that they are unconditionally stable algorithms with controllable numerical dissipation. They also demonstrate the validity and efficiency of these algorithms. © 2008 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/58506
ISSN
2015 Impact Factor: 2.425
2015 SCImago Journal Rankings: 1.710
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWang, MFen_HK
dc.contributor.authorAu, FTKen_HK
dc.date.accessioned2010-05-31T03:31:37Z-
dc.date.available2010-05-31T03:31:37Z-
dc.date.issued2009en_HK
dc.identifier.citationComputers And Structures, 2009, v. 87 n. 5-6, p. 380-390en_HK
dc.identifier.issn0045-7949en_HK
dc.identifier.urihttp://hdl.handle.net/10722/58506-
dc.description.abstractThe precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can give precise numerical results approaching exact solutions at the integration points, but it is conditionally stable. By combining Padé approximation and the generalized Padé approximation of the matrix exponential function in precise integration, and by using three different types of quadrature formulae, a new generalized family of precise time step integration methods is developed to achieve unconditional stability and arbitrary order of accuracy. Numerical studies indicate that they are unconditionally stable algorithms with controllable numerical dissipation. They also demonstrate the validity and efficiency of these algorithms. © 2008 Elsevier Ltd. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstrucen_HK
dc.relation.ispartofComputers and Structuresen_HK
dc.subjectGeneralized Padé approximationen_HK
dc.subjectMatrix exponential functionen_HK
dc.subjectNumerical integrationen_HK
dc.subjectNumerical stabilityen_HK
dc.subjectStructural dynamicsen_HK
dc.subjectUnconditional stabilityen_HK
dc.titleOn the precise integration methods based on Padé approximationsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0045-7949 0366-7138&volume=87&issue=5-6&spage=380&epage=390&date=2009&atitle=On+the+precise+integration+methods+based+on+Pade+approximationsen_HK
dc.identifier.emailAu, FTK:francis.au@hku.hken_HK
dc.identifier.authorityAu, FTK=rp00083en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.compstruc.2008.11.004en_HK
dc.identifier.scopuseid_2-s2.0-59849124991en_HK
dc.identifier.hkuros158980en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-59849124991&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume87en_HK
dc.identifier.issue5-6en_HK
dc.identifier.spage380en_HK
dc.identifier.epage390en_HK
dc.identifier.isiWOS:000264325500009-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridWang, MF=7407801843en_HK
dc.identifier.scopusauthoridAu, FTK=7005204072en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats