File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Simple finite element formulation for computing stress singularities at bimaterial interfaces

TitleSimple finite element formulation for computing stress singularities at bimaterial interfaces
Authors
KeywordsFinite element
Stress sinularities
Interface
Crack
Free edge
Issue Date2000
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/finel
Citation
Finite Elements In Analysis And Design, 2000, v. 35 n. 2, p. 97-118 How to Cite?
AbstractBy using the weak form of the governing equations for sectorial bimaterial domains and assuming that the displacement field is proportional to the (λ+1)th power of the distance from the singular stress point, a second-order characteristic matrix equation on λ is derived by a one-dimensional finite element formulation that only discretizes the domain circumferentially. Numerical examples covering a variety of interfacial singularities are presented to demonstrate the efficacy of the formulation. Accurate solutions are yielded by very few elements whereas convergence can be attained by either h- or p-refinement. The related procedures are programmed in a short MAPLE worksheet given in the appendix.
Persistent Identifierhttp://hdl.handle.net/10722/54320
ISSN
2015 Impact Factor: 2.175
2015 SCImago Journal Rankings: 1.278
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorSze, KYen_HK
dc.contributor.authorWang, HTen_HK
dc.date.accessioned2009-04-03T07:43:09Z-
dc.date.available2009-04-03T07:43:09Z-
dc.date.issued2000en_HK
dc.identifier.citationFinite Elements In Analysis And Design, 2000, v. 35 n. 2, p. 97-118en_HK
dc.identifier.issn0168-874Xen_HK
dc.identifier.urihttp://hdl.handle.net/10722/54320-
dc.description.abstractBy using the weak form of the governing equations for sectorial bimaterial domains and assuming that the displacement field is proportional to the (λ+1)th power of the distance from the singular stress point, a second-order characteristic matrix equation on λ is derived by a one-dimensional finite element formulation that only discretizes the domain circumferentially. Numerical examples covering a variety of interfacial singularities are presented to demonstrate the efficacy of the formulation. Accurate solutions are yielded by very few elements whereas convergence can be attained by either h- or p-refinement. The related procedures are programmed in a short MAPLE worksheet given in the appendix.en_HK
dc.languageengen_HK
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/finelen_HK
dc.relation.ispartofFinite elements in analysis and designen_HK
dc.rightsFinite Elements in Analysis and Design. Copyright © Elsevier BV.en_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectFinite elementen_HK
dc.subjectStress sinularitiesen_HK
dc.subjectInterfaceen_HK
dc.subjectCracken_HK
dc.subjectFree edgeen_HK
dc.titleSimple finite element formulation for computing stress singularities at bimaterial interfacesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0168-874X&volume=35&issue=2&spage=97&epage=118&date=2000&atitle=A+simple+finite+element+formulation+for+computing+stress+singularities+at+bimaterial+interfacesen_HK
dc.identifier.emailSze, KY:szeky@graduate.hku.hken_HK
dc.identifier.authoritySze, KY=rp00171en_HK
dc.description.naturepostprinten_HK
dc.identifier.doi10.1016/S0168-874X(99)00057-8en_HK
dc.identifier.scopuseid_2-s2.0-0033901223en_HK
dc.identifier.hkuros49014-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0033901223&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume35en_HK
dc.identifier.issue2en_HK
dc.identifier.spage97en_HK
dc.identifier.epage118en_HK
dc.identifier.isiWOS:000086406300001-
dc.publisher.placeNetherlandsen_HK
dc.identifier.scopusauthoridSze, KY=7006735060en_HK
dc.identifier.scopusauthoridWang, HT=7501734920en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats