File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Understanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong

TitleUnderstanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong
Authors
KeywordsGeographic information systems
GIS
SARS
Severe acute respiratory syndrome
Spatial distribution
Issue Date2004
PublisherUS Department of Health and Human Services, National Institute of Environmental Health Sciences. The Journal's web site is located at http://ehp.niehs.nih.gov/
Citation
Environmental Health Perspectives, 2004, v. 112 n. 15, p. 1550-1556 How to Cite?
AbstractWe applied cartographic and geostatistical methods in analyzing the patterns of disease spread during the 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong using geographic information system (GIS) technology. We analyzed an integrated database that contained clinical and personal details on all 1,755 patients confirmed to have SARS from 15 February to 22 June 2003. Elementary mapping of disease occurrences in space and time simultaneously revealed the geographic extent of spread throughout the territory. Statistical surfaces created by the kernel method confirmed that SARS cases were highly clustered and identified distinct disease "hot spots." Contextual analysis of mean and standard deviation of different density classes indicated that the period from day 1 (18 February) through day 16 (6 March) was the prodrome of the epidemic, whereas days 86 (15 May) to 106 (4 June) marked the declining phase of the outbreak. Origin-and-destination plots showed the directional bias and radius of spread of superspreading events. Integration of GIS technology into routine field epidemiologic surveillance can offer a real-time quantitative method for identifying and tracking the geospatial spread of infectious diseases, as our experience with SARS has demonstrated.
Persistent Identifierhttp://hdl.handle.net/10722/49379
ISSN
2023 Impact Factor: 10.1
2023 SCImago Journal Rankings: 2.525
PubMed Central ID
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLai, PCen_HK
dc.contributor.authorWong, CMen_HK
dc.contributor.authorHedley, AJen_HK
dc.contributor.authorLo, SVen_HK
dc.contributor.authorLeung, PYen_HK
dc.contributor.authorKong, Jen_HK
dc.contributor.authorLeung, GMen_HK
dc.date.accessioned2008-06-12T06:40:53Z-
dc.date.available2008-06-12T06:40:53Z-
dc.date.issued2004en_HK
dc.identifier.citationEnvironmental Health Perspectives, 2004, v. 112 n. 15, p. 1550-1556en_HK
dc.identifier.issn0091-6765en_HK
dc.identifier.urihttp://hdl.handle.net/10722/49379-
dc.description.abstractWe applied cartographic and geostatistical methods in analyzing the patterns of disease spread during the 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong using geographic information system (GIS) technology. We analyzed an integrated database that contained clinical and personal details on all 1,755 patients confirmed to have SARS from 15 February to 22 June 2003. Elementary mapping of disease occurrences in space and time simultaneously revealed the geographic extent of spread throughout the territory. Statistical surfaces created by the kernel method confirmed that SARS cases were highly clustered and identified distinct disease "hot spots." Contextual analysis of mean and standard deviation of different density classes indicated that the period from day 1 (18 February) through day 16 (6 March) was the prodrome of the epidemic, whereas days 86 (15 May) to 106 (4 June) marked the declining phase of the outbreak. Origin-and-destination plots showed the directional bias and radius of spread of superspreading events. Integration of GIS technology into routine field epidemiologic surveillance can offer a real-time quantitative method for identifying and tracking the geospatial spread of infectious diseases, as our experience with SARS has demonstrated.en_HK
dc.format.extent388 bytes-
dc.format.mimetypetext/html-
dc.languageengen_HK
dc.publisherUS Department of Health and Human Services, National Institute of Environmental Health Sciences. The Journal's web site is located at http://ehp.niehs.nih.gov/en_HK
dc.relation.ispartofEnvironmental Health Perspectivesen_HK
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectGeographic information systemsen_HK
dc.subjectGISen_HK
dc.subjectSARSen_HK
dc.subjectSevere acute respiratory syndromeen_HK
dc.subjectSpatial distributionen_HK
dc.subject.meshDisease Outbreaksen_HK
dc.subject.meshGeographic Information Systemsen_HK
dc.subject.meshPopulation Surveillanceen_HK
dc.subject.meshSevere Acute Respiratory Syndrome - epidemiologyen_HK
dc.subject.meshDatabases, Factualen_HK
dc.titleUnderstanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kongen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0091-6765&volume=112&issue=15&spage=1550&epage=1556&date=2004&atitle=Understanding+the+spatial+clustering+of+severe+acute+respiratory+syndrome+(SARS)+in+Hong+Kongen_HK
dc.identifier.emailLai, PC:pclai@hkucc.hku.hken_HK
dc.identifier.emailWong, CM:hrmrwcm@hkucc.hku.hken_HK
dc.identifier.emailHedley, AJ:hrmrajh@hkucc.hku.hken_HK
dc.identifier.emailLeung, GM:gmleung@hku.hken_HK
dc.identifier.authorityLai, PC=rp00565en_HK
dc.identifier.authorityWong, CM=rp00338en_HK
dc.identifier.authorityHedley, AJ=rp00357en_HK
dc.identifier.authorityLeung, GM=rp00460en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1289/ehp.7117en_HK
dc.identifier.pmid15531441-
dc.identifier.pmcidPMC1247620en_HK
dc.identifier.scopuseid_2-s2.0-7244259666en_HK
dc.identifier.hkuros92402-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-7244259666&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume112en_HK
dc.identifier.issue15en_HK
dc.identifier.spage1550en_HK
dc.identifier.epage1556en_HK
dc.identifier.isiWOS:000224972500044-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridLai, PC=7202946446en_HK
dc.identifier.scopusauthoridWong, CM=7404954904en_HK
dc.identifier.scopusauthoridHedley, AJ=7102584095en_HK
dc.identifier.scopusauthoridLo, SV=8426498400en_HK
dc.identifier.scopusauthoridLeung, PY=7401749022en_HK
dc.identifier.scopusauthoridKong, J=8632041300en_HK
dc.identifier.scopusauthoridLeung, GM=7007159841en_HK
dc.identifier.issnl0091-6765-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats