File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Riesz basis property of the generalized eigenvector system of a Timoshenko beam

TitleRiesz basis property of the generalized eigenvector system of a Timoshenko beam
Authors
KeywordsBoundary feedback
Generalized eigenvector system
Riesz basis
Timoshenko beam
Issue Date2004
PublisherOxford University Press. The Journal's web site is located at http://imamci.oxfordjournals.org/
Citation
Ima Journal Of Mathematical Control And Information, 2004, v. 21 n. 1, p. 65-83 How to Cite?
AbstractThe Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback controls applied to two ends is studied in this paper. The spectral property of the operator A determined by the closed loop system is investigated. It is shown that operator A has compact resolvent and generates a C 0 semigroup, and its spectrum consists of two branches and has two asymptotes under some conditions. Furthermore it is proved that the sequence of all generalized eigenvectors of the system principal operator forms a Riesz basis for the state Hilbert space.
Persistent Identifierhttp://hdl.handle.net/10722/48611
ISSN
2015 Impact Factor: 1.156
2015 SCImago Journal Rankings: 0.661
References

 

DC FieldValueLanguage
dc.contributor.authorXu, GQen_HK
dc.contributor.authorFeng, DXen_HK
dc.contributor.authorYung, SPen_HK
dc.date.accessioned2008-05-22T04:18:55Z-
dc.date.available2008-05-22T04:18:55Z-
dc.date.issued2004en_HK
dc.identifier.citationIma Journal Of Mathematical Control And Information, 2004, v. 21 n. 1, p. 65-83en_HK
dc.identifier.issn0265-0754en_HK
dc.identifier.urihttp://hdl.handle.net/10722/48611-
dc.description.abstractThe Riesz basis property of the generalized eigenvector system of a Timoshenko beam with boundary feedback controls applied to two ends is studied in this paper. The spectral property of the operator A determined by the closed loop system is investigated. It is shown that operator A has compact resolvent and generates a C 0 semigroup, and its spectrum consists of two branches and has two asymptotes under some conditions. Furthermore it is proved that the sequence of all generalized eigenvectors of the system principal operator forms a Riesz basis for the state Hilbert space.en_HK
dc.format.extent211759 bytes-
dc.format.extent3630 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherOxford University Press. The Journal's web site is located at http://imamci.oxfordjournals.org/en_HK
dc.relation.ispartofIMA Journal of Mathematical Control and Informationen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectBoundary feedbacken_HK
dc.subjectGeneralized eigenvector systemen_HK
dc.subjectRiesz basisen_HK
dc.subjectTimoshenko beamen_HK
dc.titleRiesz basis property of the generalized eigenvector system of a Timoshenko beamen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0265-0754&volume=21&issue=1&spage=65&epage=83&date=2004&atitle=Riesz+basis+property+of+the+generalized+eigenvector+system+of+a+Timoshenko+beam+en_HK
dc.identifier.emailYung, SP:spyung@hkucc.hku.hken_HK
dc.identifier.authorityYung, SP=rp00838en_HK
dc.description.naturepostprinten_HK
dc.identifier.doi10.1093/imamci/21.1.65en_HK
dc.identifier.scopuseid_2-s2.0-1542285956en_HK
dc.identifier.hkuros88945-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-1542285956&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume21en_HK
dc.identifier.issue1en_HK
dc.identifier.spage65en_HK
dc.identifier.epage83en_HK
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridXu, GQ=7404263948en_HK
dc.identifier.scopusauthoridFeng, DX=14065865000en_HK
dc.identifier.scopusauthoridYung, SP=7006540951en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats