File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/imamci/20.1.105
- Scopus: eid_2-s2.0-0037335367
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Lyapunov stability of abstract nonlinear dynamic system in Banach space
Title | Lyapunov stability of abstract nonlinear dynamic system in Banach space |
---|---|
Authors | |
Keywords | Abstract nonlinear dynamic equation Banach space Lyapunov stability |
Issue Date | 2003 |
Publisher | Oxford University Press. The Journal's web site is located at http://imamci.oxfordjournals.org/ |
Citation | Ima Journal Of Mathematical Control And Information, 2003, v. 20 n. 1, p. 105-127 How to Cite? |
Abstract | The Lyapunov stability theory for nonlinear time-varying dynamic system in Banach space is given in this paper. The Lyapunov stable theorem and the Barbashin-Krasovskii-LaSalle invariant set principle in classical theory are extended to infinite-dimensional Banach space. Under the assumptions of the existence of solution and the additive property of motions, sufficient and necessary conditions for uniform stability and uniform asymptotic stability are obtained, and the Lyapunov functions are explicitly constructed. This extension can be used as a criterion of stability for continuous and discontinuous systems. |
Persistent Identifier | http://hdl.handle.net/10722/48607 |
ISSN | 2023 Impact Factor: 1.6 2023 SCImago Journal Rankings: 0.483 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, GQ | en_HK |
dc.contributor.author | Yung, SP | en_HK |
dc.date.accessioned | 2008-05-22T04:18:49Z | - |
dc.date.available | 2008-05-22T04:18:49Z | - |
dc.date.issued | 2003 | en_HK |
dc.identifier.citation | Ima Journal Of Mathematical Control And Information, 2003, v. 20 n. 1, p. 105-127 | en_HK |
dc.identifier.issn | 0265-0754 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/48607 | - |
dc.description.abstract | The Lyapunov stability theory for nonlinear time-varying dynamic system in Banach space is given in this paper. The Lyapunov stable theorem and the Barbashin-Krasovskii-LaSalle invariant set principle in classical theory are extended to infinite-dimensional Banach space. Under the assumptions of the existence of solution and the additive property of motions, sufficient and necessary conditions for uniform stability and uniform asymptotic stability are obtained, and the Lyapunov functions are explicitly constructed. This extension can be used as a criterion of stability for continuous and discontinuous systems. | en_HK |
dc.format.extent | 252738 bytes | - |
dc.format.extent | 3630 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | Oxford University Press. The Journal's web site is located at http://imamci.oxfordjournals.org/ | en_HK |
dc.relation.ispartof | IMA Journal of Mathematical Control and Information | en_HK |
dc.subject | Abstract nonlinear dynamic equation | en_HK |
dc.subject | Banach space | en_HK |
dc.subject | Lyapunov stability | en_HK |
dc.title | Lyapunov stability of abstract nonlinear dynamic system in Banach space | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0265-0754&volume=20&issue=1&spage=105&epage=127&date=2003&atitle=Lyapunov+stability+of+abstract+nonlinear++dynamic+system++in+Banach+space | en_HK |
dc.identifier.email | Yung, SP:spyung@hkucc.hku.hk | en_HK |
dc.identifier.authority | Yung, SP=rp00838 | en_HK |
dc.description.nature | postprint | en_HK |
dc.identifier.doi | 10.1093/imamci/20.1.105 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0037335367 | en_HK |
dc.identifier.hkuros | 76457 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0037335367&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 20 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 105 | en_HK |
dc.identifier.epage | 127 | en_HK |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Xu, GQ=7404263948 | en_HK |
dc.identifier.scopusauthorid | Yung, SP=7006540951 | en_HK |
dc.identifier.issnl | 0265-0754 | - |