File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Fault estimation for a class of nonlinear dynamical systems

TitleFault estimation for a class of nonlinear dynamical systems
Authors
KeywordsTechnology: comprehensive works
Issue Date1999
PublisherIEEE. The Journal's web site is located at http://www.ieeecss.org
Citation
Proceedings Of The Ieee Conference On Decision And Control, 1999, v. 3, p. 3128-3129 How to Cite?
AbstractIn this paper, model based fault estimation for a class of nonlinear dynamical systems is investigated. The state of the system is assumed unavailable, and a nonlinear observer is used to estimate the state. In the observer, neurofuzzy network is used as the approximator to estimate faults. The network is trained on-line and the convergence of the proposed learning algorithm is established. Abrupt fault and incipient fault are analyzed in the paper and they can be estimated accurately using neurofuzzy network with the proposed learning algorithm.
Persistent Identifierhttp://hdl.handle.net/10722/46654
ISSN

 

DC FieldValueLanguage
dc.contributor.authorWang, Yen_HK
dc.contributor.authorChan, CWen_HK
dc.contributor.authorCheung, KCen_HK
dc.contributor.authorChan, WCen_HK
dc.date.accessioned2007-10-30T06:55:10Z-
dc.date.available2007-10-30T06:55:10Z-
dc.date.issued1999en_HK
dc.identifier.citationProceedings Of The Ieee Conference On Decision And Control, 1999, v. 3, p. 3128-3129en_HK
dc.identifier.issn0191-2216en_HK
dc.identifier.urihttp://hdl.handle.net/10722/46654-
dc.description.abstractIn this paper, model based fault estimation for a class of nonlinear dynamical systems is investigated. The state of the system is assumed unavailable, and a nonlinear observer is used to estimate the state. In the observer, neurofuzzy network is used as the approximator to estimate faults. The network is trained on-line and the convergence of the proposed learning algorithm is established. Abrupt fault and incipient fault are analyzed in the paper and they can be estimated accurately using neurofuzzy network with the proposed learning algorithm.en_HK
dc.format.extent199631 bytes-
dc.format.extent5145 bytes-
dc.format.extent3469 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE. The Journal's web site is located at http://www.ieeecss.orgen_HK
dc.relation.ispartofProceedings of the IEEE Conference on Decision and Controlen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectTechnology: comprehensive worksen_HK
dc.titleFault estimation for a class of nonlinear dynamical systemsen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0743-1546&volume=3&spage=3128&epage=3129&date=1999&atitle=Fault+estimation+for+a+class+of+nonlinear+dynamical+systemsen_HK
dc.identifier.emailChan, CW: mechan@hkucc.hku.hken_HK
dc.identifier.emailCheung, KC: kccheung@hkucc.hku.hken_HK
dc.identifier.authorityChan, CW=rp00088en_HK
dc.identifier.authorityCheung, KC=rp01322en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/CDC.1999.831416en_HK
dc.identifier.scopuseid_2-s2.0-0033325741en_HK
dc.identifier.hkuros49557-
dc.identifier.volume3en_HK
dc.identifier.spage3128en_HK
dc.identifier.epage3129en_HK
dc.identifier.scopusauthoridWang, Y=7601487533en_HK
dc.identifier.scopusauthoridChan, CW=7404814060en_HK
dc.identifier.scopusauthoridCheung, KC=7402406698en_HK
dc.identifier.scopusauthoridChan, WC=36503653500en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats