File Download
 
Links for fulltext
(May Require Subscription)
  • Find via
 
Supplementary

Conference Paper: Multivariate Markov chain models
  • Basic View
  • Metadata View
  • XML View
TitleMultivariate Markov chain models
 
AuthorsFung, SL
Ching, WK
Chu, SCK
Ng, KP
Zang, W
 
KeywordsMarkov chain
Estimation
Multivariate data
 
Issue Date2002
 
PublisherIEEE.
 
CitationIEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Hammamet, Tunisia, 6-9 October 2002, v. 3, p. 298-302 [How to Cite?]
 
AbstractWe study multivariate Markov chain models for approximating a conventional Markov chain model with a huge number of states. We propose an efficient estimation method for the parameters in the proposed model. Numerical examples are given to illustrate the usefulness of the proposed model.
 
ISSN1062-922X
 
DC FieldValue
dc.contributor.authorFung, SL
 
dc.contributor.authorChing, WK
 
dc.contributor.authorChu, SCK
 
dc.contributor.authorNg, KP
 
dc.contributor.authorZang, W
 
dc.date.accessioned2007-10-30T06:54:08Z
 
dc.date.available2007-10-30T06:54:08Z
 
dc.date.issued2002
 
dc.description.abstractWe study multivariate Markov chain models for approximating a conventional Markov chain model with a huge number of states. We propose an efficient estimation method for the parameters in the proposed model. Numerical examples are given to illustrate the usefulness of the proposed model.
 
dc.description.naturepublished_or_final_version
 
dc.format.extent296271 bytes
 
dc.format.extent4654 bytes
 
dc.format.extent1995 bytes
 
dc.format.mimetypeapplication/pdf
 
dc.format.mimetypetext/plain
 
dc.format.mimetypetext/plain
 
dc.identifier.citationIEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Hammamet, Tunisia, 6-9 October 2002, v. 3, p. 298-302 [How to Cite?]
 
dc.identifier.hkuros79779
 
dc.identifier.issn1062-922X
 
dc.identifier.openurl
 
dc.identifier.urihttp://hdl.handle.net/10722/46610
 
dc.languageeng
 
dc.publisherIEEE.
 
dc.rights©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectMarkov chain
 
dc.subjectEstimation
 
dc.subjectMultivariate data
 
dc.titleMultivariate Markov chain models
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Fung, SL</contributor.author>
<contributor.author>Ching, WK</contributor.author>
<contributor.author>Chu, SCK</contributor.author>
<contributor.author>Ng, KP</contributor.author>
<contributor.author>Zang, W</contributor.author>
<date.accessioned>2007-10-30T06:54:08Z</date.accessioned>
<date.available>2007-10-30T06:54:08Z</date.available>
<date.issued>2002</date.issued>
<identifier.citation>IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings, Hammamet, Tunisia, 6-9 October 2002, v. 3, p. 298-302</identifier.citation>
<identifier.issn>1062-922X</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/46610</identifier.uri>
<description.abstract>We study multivariate Markov chain models for approximating a conventional Markov chain model with a huge number of states. We propose an efficient estimation method for the parameters in the proposed model. Numerical examples are given to illustrate the usefulness of the proposed model.</description.abstract>
<format.extent>296271 bytes</format.extent>
<format.extent>4654 bytes</format.extent>
<format.extent>1995 bytes</format.extent>
<format.mimetype>application/pdf</format.mimetype>
<format.mimetype>text/plain</format.mimetype>
<format.mimetype>text/plain</format.mimetype>
<language>eng</language>
<publisher>IEEE.</publisher>
<rights>&#169;2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Markov chain</subject>
<subject>Estimation</subject>
<subject>Multivariate data</subject>
<title>Multivariate Markov chain models</title>
<type>Conference_Paper</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1062-922X&amp;volume=3&amp;spage=298&amp;epage=302&amp;date=2002&amp;atitle=Multivariate+Markov+chain+models</identifier.openurl>
<description.nature>published_or_final_version</description.nature>
<identifier.hkuros>79779</identifier.hkuros>
<bitstream.url>http://hub.hku.hk/bitstream/10722/46610/1/79779.pdf</bitstream.url>
</item>