File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Robust local polynomial regression using M-estimator with adaptive bandwidth

TitleRobust local polynomial regression using M-estimator with adaptive bandwidth
Authors
KeywordsElectronics
Issue Date2004
PublisherIEEE.
Citation
Proceedings - Ieee International Symposium On Circuits And Systems, 2004, v. 3, p. III333-III336 How to Cite?
AbstractIn this paper, a new method for robust local polynomial regression (LPR) using M-estimator with adaptive bandwidth is proposed. This is motivated by the limitation of traditional LPR in detecting and removing impulsive noise or outlies. By using M-estimation technique and the intersection of confidence intervals (ICI) rule for choosing an adaptive local bandwidth, a robust LPR algorithm is developed. Simulation results show that the new M-estimation-based LPR performs considerably better than the traditional LS-based method in removing the impulsive noise as well as preserving the jump discontinuities, which are frequently found in image and video processing.
Persistent Identifierhttp://hdl.handle.net/10722/46427
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorChan, SCen_HK
dc.contributor.authorZhang, Zen_HK
dc.date.accessioned2007-10-30T06:49:38Z-
dc.date.available2007-10-30T06:49:38Z-
dc.date.issued2004en_HK
dc.identifier.citationProceedings - Ieee International Symposium On Circuits And Systems, 2004, v. 3, p. III333-III336en_HK
dc.identifier.issn0271-4310en_HK
dc.identifier.urihttp://hdl.handle.net/10722/46427-
dc.description.abstractIn this paper, a new method for robust local polynomial regression (LPR) using M-estimator with adaptive bandwidth is proposed. This is motivated by the limitation of traditional LPR in detecting and removing impulsive noise or outlies. By using M-estimation technique and the intersection of confidence intervals (ICI) rule for choosing an adaptive local bandwidth, a robust LPR algorithm is developed. Simulation results show that the new M-estimation-based LPR performs considerably better than the traditional LS-based method in removing the impulsive noise as well as preserving the jump discontinuities, which are frequently found in image and video processing.en_HK
dc.format.extent264514 bytes-
dc.format.extent27162 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofProceedings - IEEE International Symposium on Circuits and Systemsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectElectronicsen_HK
dc.titleRobust local polynomial regression using M-estimator with adaptive bandwidthen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0271-4302&volume=3&spage=333&epage=336&date=2004&atitle=Robust+local+polynomial+regression+using+M-estimator+with+adaptive+bandwidthen_HK
dc.identifier.emailChan, SC:scchan@eee.hku.hken_HK
dc.identifier.emailZhang, Z:zgzhang@eee.hku.hken_HK
dc.identifier.authorityChan, SC=rp00094en_HK
dc.identifier.authorityZhang, Z=rp01565en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/ISCAS.2004.1328751en_HK
dc.identifier.scopuseid_2-s2.0-4344714153en_HK
dc.identifier.hkuros90054-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-4344714153&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume3en_HK
dc.identifier.spageIII333en_HK
dc.identifier.epageIII336en_HK
dc.identifier.scopusauthoridChan, SC=13310287100en_HK
dc.identifier.scopusauthoridZhang, Z=8597618700en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats