File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1049/cp:20000403
- Scopus: eid_2-s2.0-0035761486
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: A novel radial basis function neural network for fault section estimation in transmission network
Title | A novel radial basis function neural network for fault section estimation in transmission network |
---|---|
Authors | |
Issue Date | 2001 |
Publisher | IEEE. |
Citation | The 5th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 30 October - 1 November 2000, v. 1, p. 259-263 How to Cite? |
Abstract | In this paper, the application of Radial Basis Function Neural Network (RBF NN) to fault section estimation in power systems is addressed. The orthogonal least square algorithm has been extended to optimize the parameters of RBF NN. In order to assess the effectiveness of RBF NN, a classical Back-Propagation Neural Network (BP NN) has been developed to solve the same problem for comparison. Computer test is conducted on a 4-bus test system and the test results show that the RBF NN is quite effective and superior to BP NN in fault section estimation. |
Persistent Identifier | http://hdl.handle.net/10722/46338 |
ISBN | |
ISSN | 2019 SCImago Journal Rankings: 0.101 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bi, TS | en_HK |
dc.contributor.author | Ni, YX | en_HK |
dc.contributor.author | Shen, CM | en_HK |
dc.contributor.author | Wu, FF | en_HK |
dc.contributor.author | Yang, QX | en_HK |
dc.date.accessioned | 2007-10-30T06:47:40Z | - |
dc.date.available | 2007-10-30T06:47:40Z | - |
dc.date.issued | 2001 | en_HK |
dc.identifier.citation | The 5th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 30 October - 1 November 2000, v. 1, p. 259-263 | en_HK |
dc.identifier.isbn | 0-85296-791-8 | en_HK |
dc.identifier.issn | 0537-9989 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/46338 | - |
dc.description.abstract | In this paper, the application of Radial Basis Function Neural Network (RBF NN) to fault section estimation in power systems is addressed. The orthogonal least square algorithm has been extended to optimize the parameters of RBF NN. In order to assess the effectiveness of RBF NN, a classical Back-Propagation Neural Network (BP NN) has been developed to solve the same problem for comparison. Computer test is conducted on a 4-bus test system and the test results show that the RBF NN is quite effective and superior to BP NN in fault section estimation. | en_HK |
dc.format.extent | 459469 bytes | - |
dc.format.extent | 2950 bytes | - |
dc.format.extent | 12538 bytes | - |
dc.format.extent | 11910 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.format.mimetype | text/plain | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | IEEE. | en_HK |
dc.relation.ispartof | IEE Conference Publication | en_HK |
dc.rights | ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | en_HK |
dc.title | A novel radial basis function neural network for fault section estimation in transmission network | en_HK |
dc.type | Conference_Paper | en_HK |
dc.identifier.email | Ni, YX: yxni@eee.hku.hk | en_HK |
dc.identifier.email | Wu, FF: ffwu@eee.hku.hk | en_HK |
dc.identifier.authority | Ni, YX=rp00161 | en_HK |
dc.identifier.authority | Wu, FF=rp00194 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1049/cp:20000403 | - |
dc.identifier.scopus | eid_2-s2.0-0035761486 | en_HK |
dc.identifier.hkuros | 73293 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0035761486&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 1 | - |
dc.identifier.spage | 259 | en_HK |
dc.identifier.epage | 263 | en_HK |
dc.identifier.scopusauthorid | Bi, TS=6602683764 | en_HK |
dc.identifier.scopusauthorid | Ni, YX=7402910021 | en_HK |
dc.identifier.scopusauthorid | Shen, CM=7402859778 | en_HK |
dc.identifier.scopusauthorid | Wu, FF=7403465107 | en_HK |
dc.identifier.scopusauthorid | Yang, QX=7404075866 | en_HK |
dc.identifier.issnl | 0537-9989 | - |