File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Estimation of fast fading channel in impulse noise environment

TitleEstimation of fast fading channel in impulse noise environment
Authors
KeywordsElectronics
Issue Date2002
PublisherIEEE.
Citation
Proceedings - Ieee International Symposium On Circuits And Systems, 2002, v. 4, p. IV/497-IV/500 How to Cite?
AbstractThis paper studies the estimation of fast fading channel in the present of impulse noise. Fast fading channel in wireless communications system is typically modeled as autoregressive (AR) process. Least-square algorithm and Kalman filter are previously proposed for estimating the AR parameters and the channel impulse response respectively using training sequence. The performance of these algorithms, however, is very sensitive to impulse noise. In this paper, a robust Kalman filter and a robust recursive least M-estimate algorithm are employed to jointly estimate the channel impulse response and the AR parameters of fast fading channel under impulse noise. Simulation showed that the proposed algorithms are much less sensitive to impulse noise than the conventional algorithms.
Persistent Identifierhttp://hdl.handle.net/10722/46289
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorFung, CYen_HK
dc.contributor.authorChan, SCen_HK
dc.date.accessioned2007-10-30T06:46:35Z-
dc.date.available2007-10-30T06:46:35Z-
dc.date.issued2002en_HK
dc.identifier.citationProceedings - Ieee International Symposium On Circuits And Systems, 2002, v. 4, p. IV/497-IV/500en_HK
dc.identifier.issn0271-4310en_HK
dc.identifier.urihttp://hdl.handle.net/10722/46289-
dc.description.abstractThis paper studies the estimation of fast fading channel in the present of impulse noise. Fast fading channel in wireless communications system is typically modeled as autoregressive (AR) process. Least-square algorithm and Kalman filter are previously proposed for estimating the AR parameters and the channel impulse response respectively using training sequence. The performance of these algorithms, however, is very sensitive to impulse noise. In this paper, a robust Kalman filter and a robust recursive least M-estimate algorithm are employed to jointly estimate the channel impulse response and the AR parameters of fast fading channel under impulse noise. Simulation showed that the proposed algorithms are much less sensitive to impulse noise than the conventional algorithms.en_HK
dc.format.extent346179 bytes-
dc.format.extent27162 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofProceedings - IEEE International Symposium on Circuits and Systemsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectElectronicsen_HK
dc.titleEstimation of fast fading channel in impulse noise environmenten_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0271-4302&volume=4&spage=497&epage=500&date=2002&atitle=Estimation+of+fast+fading+channel+in+impulse+noise+environmenten_HK
dc.identifier.emailChan, SC:scchan@eee.hku.hken_HK
dc.identifier.authorityChan, SC=rp00094en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/ISCAS.2002.1010501en_HK
dc.identifier.scopuseid_2-s2.0-0036287822en_HK
dc.identifier.hkuros70017-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036287822&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume4en_HK
dc.identifier.spageIV/497en_HK
dc.identifier.epageIV/500en_HK
dc.identifier.scopusauthoridFung, CY=7102443735en_HK
dc.identifier.scopusauthoridChan, SC=13310287100en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats