File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: IIR notch filtering-comparisons of four adaptive algorithms for frequency estimation

TitleIIR notch filtering-comparisons of four adaptive algorithms for frequency estimation
Authors
KeywordsElectronics
Issue Date1995
PublisherIEEE.
Citation
IEEE International Symposium on Circuits and Systems Proceedings, Seattle, WA., 28 April-3 May 1995, v. 2, p. 865-868 How to Cite?
AbstractThis paper compares the parameter estimation accuracy of four adaptive algorithms for frequency estimation when applied to an IIR digital notch filter. All four algorithms were subjected to the same experimental conditions and the variance of parameter estimates are compared to the Cramer Rao Lower Bound. Results show that the RML yielded the most accurate parameter estimates although its computational burden is quite high. The AML produced good parameter estimates and it has the advantages of proven convergence properties as well as lower computational burden over the RML. For applications where the signal to noise ratio is moderate it is shown that the AGB algorithm may be suitable, particularly where minimal computational burden is desired.
Persistent Identifierhttp://hdl.handle.net/10722/46280
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorNg, TSen_HK
dc.contributor.authorChicharo, JFen_HK
dc.date.accessioned2007-10-30T06:46:24Z-
dc.date.available2007-10-30T06:46:24Z-
dc.date.issued1995en_HK
dc.identifier.citationIEEE International Symposium on Circuits and Systems Proceedings, Seattle, WA., 28 April-3 May 1995, v. 2, p. 865-868en_HK
dc.identifier.issn0271-4302en_HK
dc.identifier.urihttp://hdl.handle.net/10722/46280-
dc.description.abstractThis paper compares the parameter estimation accuracy of four adaptive algorithms for frequency estimation when applied to an IIR digital notch filter. All four algorithms were subjected to the same experimental conditions and the variance of parameter estimates are compared to the Cramer Rao Lower Bound. Results show that the RML yielded the most accurate parameter estimates although its computational burden is quite high. The AML produced good parameter estimates and it has the advantages of proven convergence properties as well as lower computational burden over the RML. For applications where the signal to noise ratio is moderate it is shown that the AGB algorithm may be suitable, particularly where minimal computational burden is desired.en_HK
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE International Symposium on Circuits and Systems Proceedings-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectElectronicsen_HK
dc.titleIIR notch filtering-comparisons of four adaptive algorithms for frequency estimationen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0271-4302&volume=2&spage=865&epage=868&date=1995&atitle=IIR+notch+filtering-comparisons+of+four+adaptive+algorithms+for+frequency+estimationen_HK
dc.identifier.emailNg, TS: tsng@eee.hku.hk-
dc.identifier.authorityNg, TS=rp00159-
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/ISCAS.1995.519901en_HK
dc.identifier.scopuseid_2-s2.0-0029190005-
dc.identifier.hkuros6654-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0029190005&selection=ref&src=s&origin=recordpage-
dc.identifier.volume2-
dc.identifier.spage865-
dc.identifier.epage868-
dc.identifier.scopusauthoridNg, TS=7402229975-
dc.identifier.scopusauthoridChicharo, JF=7004185319-
dc.customcontrol.immutablesml 160107 - merged-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats