File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Frequent-pattern based iterative projected clustering

TitleFrequent-pattern based iterative projected clustering
Authors
Issue Date2003
PublisherIEEE, Computer Society.
Citation
Proceedings - Ieee International Conference On Data Mining, Icdm, 2003, p. 689-692 How to Cite?
AbstractIrrelevant attributes add noise to high dimensional clusters and make traditional clustering techniques inappropriate. Projected clustering algorithms have been proposed to find the clusters in hidden subspaces. We realize the analogy between mining frequent itemsets and discovering the relevant subspace for a given cluster. We propose a methodology for finding projected clusters by mining frequent itemsets and present heuristics that improve its quality. Our techniques are evaluated with synthetic and real data; they are scalable and discover projected clusters accurately. © 2003 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/45532
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorYiu, MLen_HK
dc.contributor.authorMamoulis, Nen_HK
dc.date.accessioned2007-10-30T06:28:36Z-
dc.date.available2007-10-30T06:28:36Z-
dc.date.issued2003en_HK
dc.identifier.citationProceedings - Ieee International Conference On Data Mining, Icdm, 2003, p. 689-692en_HK
dc.identifier.issn1550-4786en_HK
dc.identifier.urihttp://hdl.handle.net/10722/45532-
dc.description.abstractIrrelevant attributes add noise to high dimensional clusters and make traditional clustering techniques inappropriate. Projected clustering algorithms have been proposed to find the clusters in hidden subspaces. We realize the analogy between mining frequent itemsets and discovering the relevant subspace for a given cluster. We propose a methodology for finding projected clusters by mining frequent itemsets and present heuristics that improve its quality. Our techniques are evaluated with synthetic and real data; they are scalable and discover projected clusters accurately. © 2003 IEEE.en_HK
dc.format.extent329973 bytes-
dc.format.extent1945 bytes-
dc.format.extent4295 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE, Computer Society.en_HK
dc.relation.ispartofProceedings - IEEE International Conference on Data Mining, ICDMen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.titleFrequent-pattern based iterative projected clusteringen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailMamoulis, N:nikos@cs.hku.hken_HK
dc.identifier.authorityMamoulis, N=rp00155en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.scopuseid_2-s2.0-20844440247en_HK
dc.identifier.hkuros103382-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-20844440247&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage689en_HK
dc.identifier.epage692en_HK
dc.identifier.scopusauthoridYiu, ML=8589889600en_HK
dc.identifier.scopusauthoridMamoulis, N=6701782749en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats