File Download
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Nonparametric confidence intervals based on extreme bootstrap percentiles
Title | Nonparametric confidence intervals based on extreme bootstrap percentiles |
---|---|
Authors | |
Keywords | Bootstrap Confidence limit Coverage Edgeworth expansion Equi-tailed Extreme percentile Monte Carlo Noncoverage Smooth function model |
Issue Date | 2000 |
Publisher | Academia Sinica, Institute of Statistical Science. The Journal's web site is located at http://www.stat.sinica.edu.tw/statistica/ |
Citation | Statistica Sinica, 2000, v. 10 n. 2, p. 475-496 How to Cite? |
Abstract | Monte Carlo approximation of standard bootstrap confidence intervals relies on the drawing of a large number, B say, of bootstrap resamples. Conventional choice of B is often made on the order of 1,000. While this choice may prove to be more than sufficient for some cases, it may be far from adequate for others. A new approach is suggested to construct confidence intervals based on extreme bootstrap percentiles and an adaptive choice of B. It economizes on the computational effort in a problem-specific fashion, yielding stable confidence intervals of satisfactory coverage accuracy. |
Persistent Identifier | http://hdl.handle.net/10722/45351 |
ISSN | 2023 Impact Factor: 1.5 2023 SCImago Journal Rankings: 1.368 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, SMS | en_HK |
dc.date.accessioned | 2007-10-30T06:23:33Z | - |
dc.date.available | 2007-10-30T06:23:33Z | - |
dc.date.issued | 2000 | en_HK |
dc.identifier.citation | Statistica Sinica, 2000, v. 10 n. 2, p. 475-496 | en_HK |
dc.identifier.issn | 1017-0405 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/45351 | - |
dc.description.abstract | Monte Carlo approximation of standard bootstrap confidence intervals relies on the drawing of a large number, B say, of bootstrap resamples. Conventional choice of B is often made on the order of 1,000. While this choice may prove to be more than sufficient for some cases, it may be far from adequate for others. A new approach is suggested to construct confidence intervals based on extreme bootstrap percentiles and an adaptive choice of B. It economizes on the computational effort in a problem-specific fashion, yielding stable confidence intervals of satisfactory coverage accuracy. | en_HK |
dc.format.extent | 319232 bytes | - |
dc.format.extent | 2357 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | Academia Sinica, Institute of Statistical Science. The Journal's web site is located at http://www.stat.sinica.edu.tw/statistica/ | en_HK |
dc.relation.ispartof | Statistica Sinica | en_HK |
dc.subject | Bootstrap | en_HK |
dc.subject | Confidence limit | en_HK |
dc.subject | Coverage | en_HK |
dc.subject | Edgeworth expansion | en_HK |
dc.subject | Equi-tailed | en_HK |
dc.subject | Extreme percentile | en_HK |
dc.subject | Monte Carlo | en_HK |
dc.subject | Noncoverage | en_HK |
dc.subject | Smooth function model | en_HK |
dc.title | Nonparametric confidence intervals based on extreme bootstrap percentiles | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1017-0405&volume=10&issue=2&spage=475&epage=496&date=2000&atitle=Nonparametric+confidence+intervals+based+on+extreme+bootstrap+percentiles | en_HK |
dc.identifier.email | Lee, SMS: smslee@hku.hk | en_HK |
dc.identifier.authority | Lee, SMS=rp00726 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.scopus | eid_2-s2.0-0034414849 | en_HK |
dc.identifier.hkuros | 62101 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0034414849&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 10 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 475 | en_HK |
dc.identifier.epage | 496 | en_HK |
dc.publisher.place | Taiwan, Republic of China | en_HK |
dc.identifier.scopusauthorid | Lee, SMS=24280225500 | en_HK |
dc.identifier.issnl | 1017-0405 | - |