File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Control for stability and positivity: Equivalent conditions and computation

TitleControl for stability and positivity: Equivalent conditions and computation
Authors
KeywordsLinear matrix inequality
Metzler matrix
Non-negative matrix
Positive systems
Stabilization
Issue Date2005
PublisherIEEE.
Citation
Ieee Transactions On Circuits And Systems Ii: Express Briefs, 2005, v. 52 n. 9, p. 540-544 How to Cite?
AbstractThis paper investigates the stabilizability of linear systems with closed-loop positivity. A necessary and sufficient condition for the existence of desired state-feedback controllers guaranteeing the resultant closed-loop system to be asymptotically stable and positive is obtained. Both continuous- and discrete-time cases are considered, and all of the conditions are expressed as linear matrix inequalities which can be easily verified by using standard numerical software. Numerical examples are provided to illustrate the proposed conditions. © 2005 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/44923
ISSN
2006 Impact Factor: 0.922
2007 SCImago Journal Rankings: 1.092
References

 

DC FieldValueLanguage
dc.contributor.authorGao, Hen_HK
dc.contributor.authorLam, Jen_HK
dc.contributor.authorWang, Cen_HK
dc.contributor.authorXu, Sen_HK
dc.date.accessioned2007-10-30T06:13:33Z-
dc.date.available2007-10-30T06:13:33Z-
dc.date.issued2005en_HK
dc.identifier.citationIeee Transactions On Circuits And Systems Ii: Express Briefs, 2005, v. 52 n. 9, p. 540-544en_HK
dc.identifier.issn1057-7130en_HK
dc.identifier.urihttp://hdl.handle.net/10722/44923-
dc.description.abstractThis paper investigates the stabilizability of linear systems with closed-loop positivity. A necessary and sufficient condition for the existence of desired state-feedback controllers guaranteeing the resultant closed-loop system to be asymptotically stable and positive is obtained. Both continuous- and discrete-time cases are considered, and all of the conditions are expressed as linear matrix inequalities which can be easily verified by using standard numerical software. Numerical examples are provided to illustrate the proposed conditions. © 2005 IEEE.en_HK
dc.format.extent141170 bytes-
dc.format.extent2200 bytes-
dc.format.extent10566 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Circuits and Systems II: Express Briefsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectLinear matrix inequalityen_HK
dc.subjectMetzler matrixen_HK
dc.subjectNon-negative matrixen_HK
dc.subjectPositive systemsen_HK
dc.subjectStabilizationen_HK
dc.titleControl for stability and positivity: Equivalent conditions and computationen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1549-7747&volume=52&issue=9&spage=540&epage=544&date=2005&atitle=Control+for+stability+and+positivity:+equivalent+conditions+and+computationen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/TCSII.2005.850525en_HK
dc.identifier.scopuseid_2-s2.0-26844569798en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-26844569798&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume52en_HK
dc.identifier.issue9en_HK
dc.identifier.spage540en_HK
dc.identifier.epage544en_HK
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridGao, H=7402971422en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.scopusauthoridWang, C=8337851300en_HK
dc.identifier.scopusauthoridXu, S=7404438591en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats