File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: H ∞ Filtering for Singular Systems

TitleH ∞ Filtering for Singular Systems
Authors
KeywordsContinuous systems
H ∞ filtering
Linear matrix inequality
Singular systems
Issue Date2003
PublisherIEEE.
Citation
Ieee Transactions On Automatic Control, 2003, v. 48 n. 12, p. 2217-2222 How to Cite?
AbstractThis note considers the H ∞ filtering problem for linear continuous singular systems. The purpose is the design of a linear filter such that the resulting error system is regular, impulse-free and stable while the closed-loop transfer function from the disturbance to the filtering error output satisfies a prescribed H ∞-norm bound constraint. Without decomposing the original system matrices, a necessary and sufficient condition for the solvability of this problem is obtained in terms of a set of linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of a desired filter is given. Finally, an illustrative example is presented to demonstrate the applicability of the proposed approach.
Persistent Identifierhttp://hdl.handle.net/10722/44921
ISSN
2023 Impact Factor: 6.2
2023 SCImago Journal Rankings: 4.501
References

 

DC FieldValueLanguage
dc.contributor.authorXu, Sen_HK
dc.contributor.authorLam, Jen_HK
dc.contributor.authorZou, Yen_HK
dc.date.accessioned2007-10-30T06:13:30Z-
dc.date.available2007-10-30T06:13:30Z-
dc.date.issued2003en_HK
dc.identifier.citationIeee Transactions On Automatic Control, 2003, v. 48 n. 12, p. 2217-2222en_HK
dc.identifier.issn0018-9286en_HK
dc.identifier.urihttp://hdl.handle.net/10722/44921-
dc.description.abstractThis note considers the H ∞ filtering problem for linear continuous singular systems. The purpose is the design of a linear filter such that the resulting error system is regular, impulse-free and stable while the closed-loop transfer function from the disturbance to the filtering error output satisfies a prescribed H ∞-norm bound constraint. Without decomposing the original system matrices, a necessary and sufficient condition for the solvability of this problem is obtained in terms of a set of linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of a desired filter is given. Finally, an illustrative example is presented to demonstrate the applicability of the proposed approach.en_HK
dc.format.extent304873 bytes-
dc.format.extent10566 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Automatic Controlen_HK
dc.rights©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectContinuous systemsen_HK
dc.subjectH ∞ filteringen_HK
dc.subjectLinear matrix inequalityen_HK
dc.subjectSingular systemsen_HK
dc.titleH ∞ Filtering for Singular Systemsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9286&volume=48&issue=12&spage=2217&epage=2222&date=2003&atitle=H∞+filtering+for+singular+systemsen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/TAC.2003.820149en_HK
dc.identifier.scopuseid_2-s2.0-0346055404en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0346055404&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume48en_HK
dc.identifier.issue12en_HK
dc.identifier.spage2217en_HK
dc.identifier.epage2222en_HK
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridXu, S=7404438591en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.scopusauthoridZou, Y=7402166773en_HK
dc.identifier.issnl0018-9286-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats