File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TVT.2005.853448
- Scopus: eid_2-s2.0-29044450593
- WOS: WOS:000233436000016
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles
Title | Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles |
---|---|
Authors | |
Keywords | Battery residual capacity (BPC) Electric vehicle (EV) Indicator Neural network (NN) Nickel-metal hydride (Ni-MH) |
Issue Date | 2005 |
Publisher | I E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25 |
Citation | Ieee Transactions On Vehicular Technology, 2005, v. 54 n. 5, p. 1705-1712 How to Cite? |
Abstract | This paper presents a new estimation approach for the battery residual capacity (BRC) indicator in electric vehicles (EVs). The key of this approach is to model the EV battery by using a neural network (NN) with a newly defined output and newly proposed inputs. The inputs are the discharged and regenerative capacity distribution and the temperature. The output is the state of available capacity (SOAC) which represents the BRC. Various SOACs of the nickel-metal hydride (Ni-MH) battery are experimentally investigated under different EV discharge current profiles and temperatures. The corresponding data are recorded to train and verify the proposed NN. The results indicate that the NN can provide an accurate and effective estimation of the BRC. Moreover, this NN can be easily implemented as the BRC indicator or estimator for EVs by using a low-cost microcontroller. © 2005 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/44810 |
ISSN | 2023 Impact Factor: 6.1 2023 SCImago Journal Rankings: 2.714 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shen, WX | en_HK |
dc.contributor.author | Chau, KT | en_HK |
dc.contributor.author | Chan, CC | en_HK |
dc.contributor.author | Lo, EWC | en_HK |
dc.date.accessioned | 2007-10-30T06:10:43Z | - |
dc.date.available | 2007-10-30T06:10:43Z | - |
dc.date.issued | 2005 | en_HK |
dc.identifier.citation | Ieee Transactions On Vehicular Technology, 2005, v. 54 n. 5, p. 1705-1712 | en_HK |
dc.identifier.issn | 0018-9545 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/44810 | - |
dc.description.abstract | This paper presents a new estimation approach for the battery residual capacity (BRC) indicator in electric vehicles (EVs). The key of this approach is to model the EV battery by using a neural network (NN) with a newly defined output and newly proposed inputs. The inputs are the discharged and regenerative capacity distribution and the temperature. The output is the state of available capacity (SOAC) which represents the BRC. Various SOACs of the nickel-metal hydride (Ni-MH) battery are experimentally investigated under different EV discharge current profiles and temperatures. The corresponding data are recorded to train and verify the proposed NN. The results indicate that the NN can provide an accurate and effective estimation of the BRC. Moreover, this NN can be easily implemented as the BRC indicator or estimator for EVs by using a low-cost microcontroller. © 2005 IEEE. | en_HK |
dc.format.extent | 281801 bytes | - |
dc.format.extent | 455168 bytes | - |
dc.format.extent | 4045 bytes | - |
dc.format.extent | 15593 bytes | - |
dc.format.extent | 2902 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/msword | - |
dc.format.mimetype | text/plain | - |
dc.format.mimetype | text/plain | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | I E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25 | en_HK |
dc.relation.ispartof | IEEE Transactions on Vehicular Technology | en_HK |
dc.rights | ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Battery residual capacity (BPC) | en_HK |
dc.subject | Electric vehicle (EV) | en_HK |
dc.subject | Indicator | en_HK |
dc.subject | Neural network (NN) | en_HK |
dc.subject | Nickel-metal hydride (Ni-MH) | en_HK |
dc.title | Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9545&volume=54&issue=5&spage=1705&epage=1712&date=2005&atitle=Neural+network-based+residual+capacity+indicator+for+nickel-metal+hydride+batteries+in+electric+vehicles | en_HK |
dc.identifier.email | Chau, KT:ktchau@eee.hku.hk | en_HK |
dc.identifier.authority | Chau, KT=rp00096 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1109/TVT.2005.853448 | en_HK |
dc.identifier.scopus | eid_2-s2.0-29044450593 | en_HK |
dc.identifier.hkuros | 118908 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-29044450593&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 54 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 1705 | en_HK |
dc.identifier.epage | 1712 | en_HK |
dc.identifier.isi | WOS:000233436000016 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Shen, WX=15756297100 | en_HK |
dc.identifier.scopusauthorid | Chau, KT=7202674641 | en_HK |
dc.identifier.scopusauthorid | Chan, CC=7404813179 | en_HK |
dc.identifier.scopusauthorid | Lo, EWC=7101706013 | en_HK |
dc.identifier.issnl | 0018-9545 | - |