File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TBME.2005.862540
- Scopus: eid_2-s2.0-31544482783
- PMID: 16485751
- WOS: WOS:000234882300009
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 2
- Citations:
- Appears in Collections:
Article: Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials
Title | Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials |
---|---|
Authors | |
Keywords | Convergence rate Data-reusing algorithm Evoked potential Radial basis function network Tracking ability |
Issue Date | 2006 |
Publisher | IEEE. |
Citation | Ieee Transactions On Biomedical Engineering, 2006, v. 53 n. 2, p. 226-237 How to Cite? |
Abstract | Tracking variations in both the latency and amplitude of evoked potential (EP) is important in quantifying properties of the nervous system. Adaptive filtering is a powerful tool for tracking such variations. In this paper, a data-reusing non-linear adaptive filtering method, based on a radial basis function network (RBFN), is implemented to estimate EP. The RBFN consists of an input layer of source nodes, a single hidden layer of non-linear processing units and an output layer of linear weights. It has built-in nonlinear activation functions that allow learning of function mappings. Moreover, it produces satisfactory estimates of signals against a background noise without a priori knowledge of the signal, provided that the signal and noise are independent. In clinical situations where EP responses change rapidly, the convergence rate of the algorithm becomes a critical factor. A carefully designed data-reusing RBFN can accelerate the convergence rate markedly and, thus, enhance its performance. Both theoretical analysis and simulation results support the unproved performance of our new algorithm. © 2006 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/44755 |
ISSN | 2023 Impact Factor: 4.4 2023 SCImago Journal Rankings: 1.239 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qiu, W | en_HK |
dc.contributor.author | Chang, C | en_HK |
dc.contributor.author | Liu, W | en_HK |
dc.contributor.author | Poon, PWF | en_HK |
dc.contributor.author | Hu, Y | en_HK |
dc.contributor.author | Lam, FK | en_HK |
dc.contributor.author | Hamernik, RP | en_HK |
dc.contributor.author | Wei, G | en_HK |
dc.contributor.author | Chan, FHY | en_HK |
dc.date.accessioned | 2007-10-30T06:09:30Z | - |
dc.date.available | 2007-10-30T06:09:30Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Ieee Transactions On Biomedical Engineering, 2006, v. 53 n. 2, p. 226-237 | en_HK |
dc.identifier.issn | 0018-9294 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/44755 | - |
dc.description.abstract | Tracking variations in both the latency and amplitude of evoked potential (EP) is important in quantifying properties of the nervous system. Adaptive filtering is a powerful tool for tracking such variations. In this paper, a data-reusing non-linear adaptive filtering method, based on a radial basis function network (RBFN), is implemented to estimate EP. The RBFN consists of an input layer of source nodes, a single hidden layer of non-linear processing units and an output layer of linear weights. It has built-in nonlinear activation functions that allow learning of function mappings. Moreover, it produces satisfactory estimates of signals against a background noise without a priori knowledge of the signal, provided that the signal and noise are independent. In clinical situations where EP responses change rapidly, the convergence rate of the algorithm becomes a critical factor. A carefully designed data-reusing RBFN can accelerate the convergence rate markedly and, thus, enhance its performance. Both theoretical analysis and simulation results support the unproved performance of our new algorithm. © 2006 IEEE. | en_HK |
dc.format.extent | 1836969 bytes | - |
dc.format.extent | 317003 bytes | - |
dc.format.extent | 597583 bytes | - |
dc.format.extent | 4066 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | image/jpeg | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | IEEE. | en_HK |
dc.relation.ispartof | IEEE Transactions on Biomedical Engineering | en_HK |
dc.rights | ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Convergence rate | en_HK |
dc.subject | Data-reusing algorithm | en_HK |
dc.subject | Evoked potential | en_HK |
dc.subject | Radial basis function network | en_HK |
dc.subject | Tracking ability | en_HK |
dc.subject.mesh | Adolescent | en_HK |
dc.subject.mesh | Adult | en_HK |
dc.subject.mesh | Algorithms | en_HK |
dc.subject.mesh | Artificial Intelligence | en_HK |
dc.subject.mesh | Brain - physiopathology | en_HK |
dc.subject.mesh | Computer Simulation | en_HK |
dc.subject.mesh | Computer Systems | en_HK |
dc.subject.mesh | Diagnosis, Computer-Assisted - methods | en_HK |
dc.subject.mesh | Electroencephalography - methods | en_HK |
dc.subject.mesh | Evoked Potentials | en_HK |
dc.subject.mesh | Humans | en_HK |
dc.subject.mesh | Models, Neurological | en_HK |
dc.subject.mesh | Reaction Time | en_HK |
dc.subject.mesh | Reproducibility of Results | en_HK |
dc.subject.mesh | Sensitivity and Specificity | en_HK |
dc.title | Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9294&volume=53&issue=2&spage=226&epage=237&date=2006&atitle=Real-time+data-reusing+adaptive+learning+of+a+radial+basis+function+network+for+tracking+evoked+potentials | en_HK |
dc.identifier.email | Chang, C: cqchang@eee.hku.hk | en_HK |
dc.identifier.email | Hu, Y: yhud@hku.hk | en_HK |
dc.identifier.authority | Chang, C=rp00095 | en_HK |
dc.identifier.authority | Hu, Y=rp00432 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1109/TBME.2005.862540 | en_HK |
dc.identifier.pmid | 16485751 | - |
dc.identifier.scopus | eid_2-s2.0-31544482783 | en_HK |
dc.identifier.hkuros | 117016 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-31544482783&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 53 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 226 | en_HK |
dc.identifier.epage | 237 | en_HK |
dc.identifier.isi | WOS:000234882300009 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Qiu, W=36461603400 | en_HK |
dc.identifier.scopusauthorid | Chang, C=7407033052 | en_HK |
dc.identifier.scopusauthorid | Liu, W=7407341280 | en_HK |
dc.identifier.scopusauthorid | Poon, PWF=24322414600 | en_HK |
dc.identifier.scopusauthorid | Hu, Y=7407116091 | en_HK |
dc.identifier.scopusauthorid | Lam, FK=7102075939 | en_HK |
dc.identifier.scopusauthorid | Hamernik, RP=7005178310 | en_HK |
dc.identifier.scopusauthorid | Wei, G=35499953100 | en_HK |
dc.identifier.scopusauthorid | Chan, FHY=7202586429 | en_HK |
dc.identifier.citeulike | 4698596 | - |
dc.identifier.issnl | 0018-9294 | - |