File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Two algorithms for fast and accurate passivity-preserving model order reduction

TitleTwo algorithms for fast and accurate passivity-preserving model order reduction
Authors
KeywordsAlgebraic riccati equation
Balanced stochastic truncation (BST)
Newton method
Smith method
SR algorithm
Issue Date2006
PublisherIEEE.
Citation
Ieee Transactions On Computer-Aided Design Of Integrated Circuits And Systems, 2006, v. 25 n. 10, p. 2062-2074 How to Cite?
AbstractThis paper presents two recently developed algorithms for efficient model order reduction. Both algorithms enable the fast solution of continuous-time algebraic Riccati equations (CAREs) that constitute the bottleneck in the passivity-preserving balanced stochastic truncation (BST). The first algorithm is a Smith-method-based Newton algorithm, called Newton/Smith CARE, that exploits low-rank matrices commonly found in physical system modeling. The second algorithm is a project-and-balance scheme that utilizes dominant eigenspace projection, followed by a simultaneous solution of a pair of dual CAREs through completely separating the stable and unstable invariant subspaces of a Hamiltonian matrix. The algorithms can be applied individually or together. Numerical examples show the proposed algorithms offer significant computational savings and better accuracy in reduced-order models over those from conventional schemes. © 2006 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/44741
ISSN
2015 Impact Factor: 1.181
2015 SCImago Journal Rankings: 0.710
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWong, Nen_HK
dc.contributor.authorBalakrishnan, Ven_HK
dc.contributor.authorKoh, CKen_HK
dc.contributor.authorNg, TSen_HK
dc.date.accessioned2007-10-30T06:09:11Z-
dc.date.available2007-10-30T06:09:11Z-
dc.date.issued2006en_HK
dc.identifier.citationIeee Transactions On Computer-Aided Design Of Integrated Circuits And Systems, 2006, v. 25 n. 10, p. 2062-2074en_HK
dc.identifier.issn0278-0070en_HK
dc.identifier.urihttp://hdl.handle.net/10722/44741-
dc.description.abstractThis paper presents two recently developed algorithms for efficient model order reduction. Both algorithms enable the fast solution of continuous-time algebraic Riccati equations (CAREs) that constitute the bottleneck in the passivity-preserving balanced stochastic truncation (BST). The first algorithm is a Smith-method-based Newton algorithm, called Newton/Smith CARE, that exploits low-rank matrices commonly found in physical system modeling. The second algorithm is a project-and-balance scheme that utilizes dominant eigenspace projection, followed by a simultaneous solution of a pair of dual CAREs through completely separating the stable and unstable invariant subspaces of a Hamiltonian matrix. The algorithms can be applied individually or together. Numerical examples show the proposed algorithms offer significant computational savings and better accuracy in reduced-order models over those from conventional schemes. © 2006 IEEE.en_HK
dc.format.extent604378 bytes-
dc.format.extent21012 bytes-
dc.format.extent21377 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systemsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectAlgebraic riccati equationen_HK
dc.subjectBalanced stochastic truncation (BST)en_HK
dc.subjectNewton methoden_HK
dc.subjectSmith methoden_HK
dc.subjectSR algorithmen_HK
dc.titleTwo algorithms for fast and accurate passivity-preserving model order reductionen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0278-0070&volume=25&issue=10&spage=2062&epage=2075&date=2006&atitle=Two+Algorithms+for+Fast+and+Accurate+Passivity-Preserving+Model+Order+Reductionen_HK
dc.identifier.emailWong, N:nwong@eee.hku.hken_HK
dc.identifier.emailNg, TS:tsng@eee.hku.hken_HK
dc.identifier.authorityWong, N=rp00190en_HK
dc.identifier.authorityNg, TS=rp00159en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/TCAD.2006.873893en_HK
dc.identifier.scopuseid_2-s2.0-33748288305en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33748288305&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume25en_HK
dc.identifier.issue10en_HK
dc.identifier.spage2062en_HK
dc.identifier.epage2074en_HK
dc.identifier.isiWOS:000240926700013-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridWong, N=35235551600en_HK
dc.identifier.scopusauthoridBalakrishnan, V=7102659847en_HK
dc.identifier.scopusauthoridKoh, CK=7201749804en_HK
dc.identifier.scopusauthoridNg, TS=7402229975en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats