File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Learning templates from fuzzy examples in structural pattern recognition

TitleLearning templates from fuzzy examples in structural pattern recognition
Authors
Issue Date1994
PublisherIEEE.
Citation
The 3rd IEEE Conference on Fuzzy Systems, Orlando, FL, 26-29 June 1994. In IEEE International Conference on Fuzzy Systems, 1994, v. 1, p. 608-613 How to Cite?
AbstractFuzzy-Attribute Graph (FAG) was proposed to handle fuzziness in the pattern primitives in structural pattern recognition. FAG has the advantage that we can combine several possible definition into a single template. However, the template require a human expert to define. In this paper, we propose an algorithm that can; from a number of fuzzy instances, find a template that can be matched to the patterns by the original matching metric.
Persistent Identifierhttp://hdl.handle.net/10722/43632
ISBN

 

DC FieldValueLanguage
dc.contributor.authorChan, KwokPingen_HK
dc.date.accessioned2007-03-23T04:50:54Z-
dc.date.available2007-03-23T04:50:54Z-
dc.date.issued1994en_HK
dc.identifier.citationThe 3rd IEEE Conference on Fuzzy Systems, Orlando, FL, 26-29 June 1994. In IEEE International Conference on Fuzzy Systems, 1994, v. 1, p. 608-613en_HK
dc.identifier.isbn0-7803-1896-X-
dc.identifier.urihttp://hdl.handle.net/10722/43632-
dc.description.abstractFuzzy-Attribute Graph (FAG) was proposed to handle fuzziness in the pattern primitives in structural pattern recognition. FAG has the advantage that we can combine several possible definition into a single template. However, the template require a human expert to define. In this paper, we propose an algorithm that can; from a number of fuzzy instances, find a template that can be matched to the patterns by the original matching metric.en_HK
dc.format.extent675147 bytes-
dc.format.extent25600 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE International Conference on Fuzzy Systemsen_HK
dc.rights©1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.titleLearning templates from fuzzy examples in structural pattern recognitionen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailChan, KwokPing:kpchan@cs.hku.hken_HK
dc.identifier.authorityChan, KwokPing=rp00092en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/FUZZY.1994.343662-
dc.identifier.scopuseid_2-s2.0-0028739982en_HK
dc.identifier.volume1en_HK
dc.identifier.spage608en_HK
dc.identifier.epage613en_HK
dc.identifier.scopusauthoridChan, KwokPing=7406032820en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats