File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Aggregate nearest neighbor queries in road networks
  • Basic View
  • Metadata View
  • XML View
TitleAggregate nearest neighbor queries in road networks
 
AuthorsYiu, ML1
Mamoulis, N1
Papadias, D2
 
KeywordsLocation-dependent and sensitive
Query processing
Spatial databases
Spatial databases and GIS
 
Issue Date2005
 
PublisherI E E E. The Journal's web site is located at http://www.computer.org/tkde
 
CitationIeee Transactions On Knowledge And Data Engineering, 2005, v. 17 n. 6, p. 820-833 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TKDE.2005.87
 
AbstractAggregate nearest neighbor queries return the object that minimizes an aggregate distance function with respect to a set of query points. Consider, for example, several users at specific locations (query points) that want to find the restaurant (data point), which leads to the minimum sum of distances that they have to travel in order to meet. We study the processing of such queries for the case where the position and accessibility of spatial objects are constrained by spatial (e.g., road) networks. We consider alternative aggregate functions and techniques that utilize Euclidean distance bounds, spatial access methods, and/or network distance materialization structures. Our algorithms are experimentally evaluated with synthetic and real data. The results show that their relative performance depends on the problem characteristics. © 2005 IEEE.
 
ISSN1041-4347
2012 Impact Factor: 1.892
2012 SCImago Journal Rankings: 2.675
 
DOIhttp://dx.doi.org/10.1109/TKDE.2005.87
 
ISI Accession Number IDWOS:000228453300009
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorYiu, ML
 
dc.contributor.authorMamoulis, N
 
dc.contributor.authorPapadias, D
 
dc.date.accessioned2007-03-23T04:50:45Z
 
dc.date.available2007-03-23T04:50:45Z
 
dc.date.issued2005
 
dc.description.abstractAggregate nearest neighbor queries return the object that minimizes an aggregate distance function with respect to a set of query points. Consider, for example, several users at specific locations (query points) that want to find the restaurant (data point), which leads to the minimum sum of distances that they have to travel in order to meet. We study the processing of such queries for the case where the position and accessibility of spatial objects are constrained by spatial (e.g., road) networks. We consider alternative aggregate functions and techniques that utilize Euclidean distance bounds, spatial access methods, and/or network distance materialization structures. Our algorithms are experimentally evaluated with synthetic and real data. The results show that their relative performance depends on the problem characteristics. © 2005 IEEE.
 
dc.description.naturepublished_or_final_version
 
dc.format.extent1529837 bytes
 
dc.format.extent26624 bytes
 
dc.format.mimetypeapplication/pdf
 
dc.format.mimetypeapplication/msword
 
dc.identifier.citationIeee Transactions On Knowledge And Data Engineering, 2005, v. 17 n. 6, p. 820-833 [How to Cite?]
DOI: http://dx.doi.org/10.1109/TKDE.2005.87
 
dc.identifier.citeulike302445
 
dc.identifier.doihttp://dx.doi.org/10.1109/TKDE.2005.87
 
dc.identifier.epage833
 
dc.identifier.hkuros103322
 
dc.identifier.isiWOS:000228453300009
 
dc.identifier.issn1041-4347
2012 Impact Factor: 1.892
2012 SCImago Journal Rankings: 2.675
 
dc.identifier.issue6
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-20844452621
 
dc.identifier.spage820
 
dc.identifier.urihttp://hdl.handle.net/10722/43625
 
dc.identifier.volume17
 
dc.languageeng
 
dc.publisherI E E E. The Journal's web site is located at http://www.computer.org/tkde
 
dc.publisher.placeUnited States
 
dc.relation.ispartofIEEE Transactions on Knowledge and Data Engineering
 
dc.relation.referencesReferences in Scopus
 
dc.rights©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectLocation-dependent and sensitive
 
dc.subjectQuery processing
 
dc.subjectSpatial databases
 
dc.subjectSpatial databases and GIS
 
dc.titleAggregate nearest neighbor queries in road networks
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Yiu, ML</contributor.author>
<contributor.author>Mamoulis, N</contributor.author>
<contributor.author>Papadias, D</contributor.author>
<date.accessioned>2007-03-23T04:50:45Z</date.accessioned>
<date.available>2007-03-23T04:50:45Z</date.available>
<date.issued>2005</date.issued>
<identifier.citation>Ieee Transactions On Knowledge And Data Engineering, 2005, v. 17 n. 6, p. 820-833</identifier.citation>
<identifier.issn>1041-4347</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/43625</identifier.uri>
<description.abstract>Aggregate nearest neighbor queries return the object that minimizes an aggregate distance function with respect to a set of query points. Consider, for example, several users at specific locations (query points) that want to find the restaurant (data point), which leads to the minimum sum of distances that they have to travel in order to meet. We study the processing of such queries for the case where the position and accessibility of spatial objects are constrained by spatial (e.g., road) networks. We consider alternative aggregate functions and techniques that utilize Euclidean distance bounds, spatial access methods, and/or network distance materialization structures. Our algorithms are experimentally evaluated with synthetic and real data. The results show that their relative performance depends on the problem characteristics. &#169; 2005 IEEE.</description.abstract>
<format.extent>1529837 bytes</format.extent>
<format.extent>26624 bytes</format.extent>
<format.mimetype>application/pdf</format.mimetype>
<format.mimetype>application/msword</format.mimetype>
<language>eng</language>
<publisher>I E E E. The Journal&apos;s web site is located at http://www.computer.org/tkde</publisher>
<relation.ispartof>IEEE Transactions on Knowledge and Data Engineering</relation.ispartof>
<rights>&#169;2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Location-dependent and sensitive</subject>
<subject>Query processing</subject>
<subject>Spatial databases</subject>
<subject>Spatial databases and GIS</subject>
<title>Aggregate nearest neighbor queries in road networks</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1041-4347&amp;volume=17&amp;issue=6&amp;spage=820&amp;epage=833&amp;date=2005&amp;atitle=Aggregate+nearest+neighbor+queries+in+road+networks</identifier.openurl>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1109/TKDE.2005.87</identifier.doi>
<identifier.scopus>eid_2-s2.0-20844452621</identifier.scopus>
<identifier.hkuros>103322</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-20844452621&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>17</identifier.volume>
<identifier.issue>6</identifier.issue>
<identifier.spage>820</identifier.spage>
<identifier.epage>833</identifier.epage>
<identifier.isi>WOS:000228453300009</identifier.isi>
<publisher.place>United States</publisher.place>
<identifier.citeulike>302445</identifier.citeulike>
<bitstream.url>http://hub.hku.hk/bitstream/10722/43625/1/103322.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Hong Kong University of Science and Technology