File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Quantum-classical complexity-security tradeoff in secure multiparty computations

TitleQuantum-classical complexity-security tradeoff in secure multiparty computations
Authors
KeywordsPhysics
Issue Date2000
PublisherAmerican Physical Society. The Journal's web site is located at http://pra.aps.org
Citation
Physical Review A - Atomic, Molecular, And Optical Physics, 2000, v. 61 n. 3, p. 323081-323089 How to Cite?
AbstractI construct a secure multiparty scheme to compute a classical function by a succinct use of a specially designed fault-tolerant random polynomial quantum error correction code. This scheme is secure provided that (asymptotically) strictly more than five-sixths of the players are honest. Moreover, the security of this scheme follows directly from the theory of quantum error correcting code, and hence is valid without any computational assumption. I also discuss the quantum-classical complexity-security tradeoff in secure multiparty computation schemes and argue why a full-blown quantum code is necessary in my scheme.
Persistent Identifierhttp://hdl.handle.net/10722/43287
ISSN
2014 Impact Factor: 2.808
2015 SCImago Journal Rankings: 1.418
References

 

DC FieldValueLanguage
dc.contributor.authorChau, HFen_HK
dc.date.accessioned2007-03-23T04:42:54Z-
dc.date.available2007-03-23T04:42:54Z-
dc.date.issued2000en_HK
dc.identifier.citationPhysical Review A - Atomic, Molecular, And Optical Physics, 2000, v. 61 n. 3, p. 323081-323089en_HK
dc.identifier.issn1050-2947en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43287-
dc.description.abstractI construct a secure multiparty scheme to compute a classical function by a succinct use of a specially designed fault-tolerant random polynomial quantum error correction code. This scheme is secure provided that (asymptotically) strictly more than five-sixths of the players are honest. Moreover, the security of this scheme follows directly from the theory of quantum error correcting code, and hence is valid without any computational assumption. I also discuss the quantum-classical complexity-security tradeoff in secure multiparty computation schemes and argue why a full-blown quantum code is necessary in my scheme.en_HK
dc.format.extent113178 bytes-
dc.format.extent28160 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherAmerican Physical Society. The Journal's web site is located at http://pra.aps.orgen_HK
dc.relation.ispartofPhysical Review A - Atomic, Molecular, and Optical Physicsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rightsPhysical Review A (Atomic, Molecular and Optical Physics). Copyright © American Physical Society.en_HK
dc.subjectPhysicsen_HK
dc.titleQuantum-classical complexity-security tradeoff in secure multiparty computationsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0556-2791&volume=61&issue=3&spage=032308.1&epage=9&date=2000&atitle=Quantum-classical+complexity-security+tradeoff+in+secure+multiparty+computationsen_HK
dc.identifier.emailChau, HF: hfchau@hku.hken_HK
dc.identifier.authorityChau, HF=rp00669en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1103/PhysRevA.61.032308en_HK
dc.identifier.scopuseid_2-s2.0-0005308468en_HK
dc.identifier.hkuros48245-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0005308468&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume61en_HK
dc.identifier.issue3en_HK
dc.identifier.spage323081en_HK
dc.identifier.epage323089en_HK
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChau, HF=7005742276en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats