File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Stability and control of differential linear repetitive processes using an LMI setting

TitleStability and control of differential linear repetitive processes using an LMI setting
Authors
KeywordsController design
Linear matrix inequality (LMI) design
Repetitive dynamics
Uncertainty
Issue Date2003
PublisherIEEE.
Citation
Ieee Transactions On Circuits And Systems Ii: Analog And Digital Signal Processing, 2003, v. 50 n. 9, p. 662-666 How to Cite?
AbstractThis paper considers differential linear repetitive processes which are a distinct class of two-dimensional continuous-discrete linear systems of both physical and systems theoretic interest. The substantial new results are on the application of linear-matrix-inequality-based tools to stability analysis and controller design for these processes, where the class of control laws used has a well defined physical basis. It is also shown that these tools extend naturally to cases when there is uncertainty in the state-space model of the underlying dynamics.
Persistent Identifierhttp://hdl.handle.net/10722/43063
ISSN
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorGalkowski, Ken_HK
dc.contributor.authorPaszke, Wen_HK
dc.contributor.authorRogers, Een_HK
dc.contributor.authorXu, Sen_HK
dc.contributor.authorLam, Jen_HK
dc.contributor.authorOwens, DHen_HK
dc.date.accessioned2007-03-23T04:37:57Z-
dc.date.available2007-03-23T04:37:57Z-
dc.date.issued2003en_HK
dc.identifier.citationIeee Transactions On Circuits And Systems Ii: Analog And Digital Signal Processing, 2003, v. 50 n. 9, p. 662-666en_HK
dc.identifier.issn1057-7130en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43063-
dc.description.abstractThis paper considers differential linear repetitive processes which are a distinct class of two-dimensional continuous-discrete linear systems of both physical and systems theoretic interest. The substantial new results are on the application of linear-matrix-inequality-based tools to stability analysis and controller design for these processes, where the class of control laws used has a well defined physical basis. It is also shown that these tools extend naturally to cases when there is uncertainty in the state-space model of the underlying dynamics.en_HK
dc.format.extent260070 bytes-
dc.format.extent35328 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processingen_HK
dc.rights©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectController designen_HK
dc.subjectLinear matrix inequality (LMI) designen_HK
dc.subjectRepetitive dynamicsen_HK
dc.subjectUncertaintyen_HK
dc.titleStability and control of differential linear repetitive processes using an LMI settingen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1057-7130&volume=50&issue=9&spage=662&epage=666&date=2003&atitle=Stability+and+control+of+differential+linear+repetitive+processes+using+an+LMI+settingen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/TCSII.2003.816909en_HK
dc.identifier.scopuseid_2-s2.0-0141885119en_HK
dc.identifier.hkuros90671-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0141885119&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume50en_HK
dc.identifier.issue9en_HK
dc.identifier.spage662en_HK
dc.identifier.epage666en_HK
dc.identifier.isiWOS:000185397400019-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridGalkowski, K=7003620439en_HK
dc.identifier.scopusauthoridPaszke, W=6602647840en_HK
dc.identifier.scopusauthoridRogers, E=7202060289en_HK
dc.identifier.scopusauthoridXu, S=7404438591en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.scopusauthoridOwens, DH=7401549935en_HK
dc.identifier.issnl1057-7130-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats