File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On quadratic stability of systems with structured uncertainty

TitleOn quadratic stability of systems with structured uncertainty
Authors
KeywordsLinear systems
Optimization
Quadratic stability
Stability robustness
Issue Date2001
PublisherIEEE.
Citation
Ieee Transactions On Automatic Control, 2001, v. 46 n. 11, p. 1799-1805 How to Cite?
AbstractThis note considers the problem of stability robustness with respect to a class of nonlinear time-varying perturbations which are bounded in a component-wise rather than aggregated manner. A family of robustness bounds is parameterized in terms of a nonsingular symmetric matrix. It is shown that the problem of computing the largest robustness bound over the set of nonsingular symmetric matrices can be approximated by a smooth minimization problem over a compact set. A convergent algorithm for computing an optimal robustness bound is proposed in the form of a gradient flow.
Persistent Identifierhttp://hdl.handle.net/10722/43042
ISSN
2015 Impact Factor: 2.777
2015 SCImago Journal Rankings: 4.238
References

 

DC FieldValueLanguage
dc.contributor.authorYan, WYen_HK
dc.contributor.authorLam, Jen_HK
dc.date.accessioned2007-03-23T04:37:29Z-
dc.date.available2007-03-23T04:37:29Z-
dc.date.issued2001en_HK
dc.identifier.citationIeee Transactions On Automatic Control, 2001, v. 46 n. 11, p. 1799-1805en_HK
dc.identifier.issn0018-9286en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43042-
dc.description.abstractThis note considers the problem of stability robustness with respect to a class of nonlinear time-varying perturbations which are bounded in a component-wise rather than aggregated manner. A family of robustness bounds is parameterized in terms of a nonsingular symmetric matrix. It is shown that the problem of computing the largest robustness bound over the set of nonsingular symmetric matrices can be approximated by a smooth minimization problem over a compact set. A convergent algorithm for computing an optimal robustness bound is proposed in the form of a gradient flow.en_HK
dc.format.extent236211 bytes-
dc.format.extent35328 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Automatic Controlen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectLinear systemsen_HK
dc.subjectOptimizationen_HK
dc.subjectQuadratic stabilityen_HK
dc.subjectStability robustnessen_HK
dc.titleOn quadratic stability of systems with structured uncertaintyen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9286&volume=46&issue=11&spage=1799&epage=1805&date=2001&atitle=On+Quadratic+Stability+of+Systems+with+Structured+Uncertaintyen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/9.964695en_HK
dc.identifier.scopuseid_2-s2.0-0035507304en_HK
dc.identifier.hkuros70301-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0035507304&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume46en_HK
dc.identifier.issue11en_HK
dc.identifier.spage1799en_HK
dc.identifier.epage1805en_HK
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridYan, WY=7402221751en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats