File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A class of exact, periodic solutions of nonlinear envelope equations

TitleA class of exact, periodic solutions of nonlinear envelope equations
Authors
KeywordsPhysics mathematics
Issue Date1995
PublisherAmerican Institute of Physics. The Journal's web site is located at http://ojps.aip.org/jmp/
Citation
Journal Of Mathematical Physics, 1995, v. 36 n. 8, p. 4125-4137 How to Cite?
AbstractA class of periodic solutions of nonlinear envelope equations, e.g., the nonlinear Schrödinger equation (NLS), is expressed in terms of rational functions of elliptic functions. The Hirota bilinear transformation and theta functions are used to extend and generalize this class of solutions first reported for NLS earlier in the literature. In particular a higher order NLS and the Davey-Stewartson (DS) equations are treated. Doubly periodic standing waves solutions are obtained for both the DSI and DSII equations. A symbolic manipulation software is used to confirm the validity of the solutions independently. © 1995 American Institute of Physics.
Persistent Identifierhttp://hdl.handle.net/10722/43018
ISSN
2015 Impact Factor: 1.234
2015 SCImago Journal Rankings: 0.767
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_HK
dc.date.accessioned2007-03-23T04:37:01Z-
dc.date.available2007-03-23T04:37:01Z-
dc.date.issued1995en_HK
dc.identifier.citationJournal Of Mathematical Physics, 1995, v. 36 n. 8, p. 4125-4137en_HK
dc.identifier.issn0022-2488en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43018-
dc.description.abstractA class of periodic solutions of nonlinear envelope equations, e.g., the nonlinear Schrödinger equation (NLS), is expressed in terms of rational functions of elliptic functions. The Hirota bilinear transformation and theta functions are used to extend and generalize this class of solutions first reported for NLS earlier in the literature. In particular a higher order NLS and the Davey-Stewartson (DS) equations are treated. Doubly periodic standing waves solutions are obtained for both the DSI and DSII equations. A symbolic manipulation software is used to confirm the validity of the solutions independently. © 1995 American Institute of Physics.en_HK
dc.format.extent1004125 bytes-
dc.format.extent26624 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherAmerican Institute of Physics. The Journal's web site is located at http://ojps.aip.org/jmp/en_HK
dc.relation.ispartofJournal of Mathematical Physicsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectPhysics mathematicsen_HK
dc.titleA class of exact, periodic solutions of nonlinear envelope equationsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0022-2488&volume=36&issue=8&spage=4125&epage=4137&date=1995&atitle=A+class+of+exact,+periodic+solutions+of+nonlinear+envelope+equationsen_HK
dc.identifier.emailChow, KW:kwchow@hku.hken_HK
dc.identifier.authorityChow, KW=rp00112en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1063/1.530951en_HK
dc.identifier.scopuseid_2-s2.0-36449005107en_HK
dc.identifier.hkuros13992-
dc.identifier.volume36en_HK
dc.identifier.issue8en_HK
dc.identifier.spage4125en_HK
dc.identifier.epage4137en_HK
dc.identifier.isiWOS:A1995RM88500019-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChow, KW=13605209900en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats