File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A fuzzy k-modes algorithm for clustering categorical data

TitleA fuzzy k-modes algorithm for clustering categorical data
Authors
Issue Date1999
PublisherIEEE.
Citation
IEEE Transactions on Fuzzy Systems, 1999, v. 7 n. 4, p. 446-452 How to Cite?
AbstractThis correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.
Persistent Identifierhttp://hdl.handle.net/10722/42992
ISSN
2015 Impact Factor: 6.701
2015 SCImago Journal Rankings: 5.800

 

DC FieldValueLanguage
dc.contributor.authorHuang, Zen_HK
dc.contributor.authorNg, MKPen_HK
dc.date.accessioned2007-03-23T04:36:24Z-
dc.date.available2007-03-23T04:36:24Z-
dc.date.issued1999en_HK
dc.identifier.citationIEEE Transactions on Fuzzy Systems, 1999, v. 7 n. 4, p. 446-452en_HK
dc.identifier.issn1063-6706en_HK
dc.identifier.urihttp://hdl.handle.net/10722/42992-
dc.description.abstractThis correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.en_HK
dc.format.extent164105 bytes-
dc.format.extent26112 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.titleA fuzzy k-modes algorithm for clustering categorical dataen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1063-6706&volume=7&issue=4&spage=446&epage=452&date=1999&atitle=A+fuzzy+k-modes+algorithm+for+clustering+categorical+dataen_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/91.784206en_HK
dc.identifier.scopuseid_2-s2.0-0032595161-
dc.identifier.hkuros52935-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats