File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients

TitleAn efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients
Authors
KeywordsDiscrete Fourier transform (DFT)
Fast Fourier transform (FFT)
Radix-2 n decimation-in-frequency (DIF)
Sum-of-powers-of-two (SOPOT)
Issue Date2002
PublisherI E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97
Citation
Ieee Signal Processing Letters, 2002, v. 9 n. 10, p. 322-325 How to Cite?
AbstractThis letter proposes a new multiplierless approximation of the discrete Fourier transform (DFT) called the multiplierless fast Fourier transform-like (ML-FFT) transformation. It makes use of a novel factorization to parameterize the twiddle factors in the conventional radix-2 n or split-radix FFT algorithms as certain rotation-like matrices and approximates the associated parameters using the sum-of-powers-of-two (SOPOT) or canonical signed digits (CSD) representations. The ML-FFT converges to the DFT when the number of SOPOT terms used increases and has an arithmetic complexity of O(N log 2 N) additions, where N = 2 m is the transform length. Design results show that the ML-FFT offers flexible tradeoff between arithmetic complexity and numerical accuracy in approximating the DFT.
Persistent Identifierhttp://hdl.handle.net/10722/42941
ISSN
2023 Impact Factor: 3.2
2023 SCImago Journal Rankings: 1.271
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChan, SCen_HK
dc.contributor.authorYiu, PMen_HK
dc.date.accessioned2007-03-23T04:35:10Z-
dc.date.available2007-03-23T04:35:10Z-
dc.date.issued2002en_HK
dc.identifier.citationIeee Signal Processing Letters, 2002, v. 9 n. 10, p. 322-325en_HK
dc.identifier.issn1070-9908en_HK
dc.identifier.urihttp://hdl.handle.net/10722/42941-
dc.description.abstractThis letter proposes a new multiplierless approximation of the discrete Fourier transform (DFT) called the multiplierless fast Fourier transform-like (ML-FFT) transformation. It makes use of a novel factorization to parameterize the twiddle factors in the conventional radix-2 n or split-radix FFT algorithms as certain rotation-like matrices and approximates the associated parameters using the sum-of-powers-of-two (SOPOT) or canonical signed digits (CSD) representations. The ML-FFT converges to the DFT when the number of SOPOT terms used increases and has an arithmetic complexity of O(N log 2 N) additions, where N = 2 m is the transform length. Design results show that the ML-FFT offers flexible tradeoff between arithmetic complexity and numerical accuracy in approximating the DFT.en_HK
dc.format.extent258886 bytes-
dc.format.extent28672 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherI E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97en_HK
dc.relation.ispartofIEEE Signal Processing Lettersen_HK
dc.rights©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectDiscrete Fourier transform (DFT)en_HK
dc.subjectFast Fourier transform (FFT)en_HK
dc.subjectRadix-2 n decimation-in-frequency (DIF)en_HK
dc.subjectSum-of-powers-of-two (SOPOT)en_HK
dc.titleAn efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficientsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1070-9908&volume=9&issue=10&spage=322&epage=325&date=2002&atitle=An+efficient+multiplierless+approximation+of+the+fast+Fourier+transform+using+sum-of-powers-of-two+(SOPOT)+coefficientsen_HK
dc.identifier.emailChan, SC:scchan@eee.hku.hken_HK
dc.identifier.authorityChan, SC=rp00094en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/LSP.2002.803408en_HK
dc.identifier.scopuseid_2-s2.0-0036815321en_HK
dc.identifier.hkuros82483-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036815321&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume9en_HK
dc.identifier.issue10en_HK
dc.identifier.spage322en_HK
dc.identifier.epage325en_HK
dc.identifier.isiWOS:000179026800007-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChan, SC=13310287100en_HK
dc.identifier.scopusauthoridYiu, PM=6701686204en_HK
dc.identifier.issnl1070-9908-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats