File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TPDS.2002.1058098
- Scopus: eid_2-s2.0-0036870147
- WOS: WOS:000179095500004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A novel channel-adaptive uplink access control protocol for nomadic computing
Title | A novel channel-adaptive uplink access control protocol for nomadic computing |
---|---|
Authors | |
Keywords | Adaptive protocols Distributed data access Error control Mobile computing Wireless systems |
Issue Date | 2002 |
Publisher | I E E E. The Journal's web site is located at http://www.computer.org/tpds |
Citation | Ieee Transactions On Parallel And Distributed Systems, 2002, v. 13 n. 11, p. 1150-1165 How to Cite? |
Abstract | We consider the uplink access control problem in a mobile nomadic computing system, which is based on a cellular phone network in that a user can use the mobile device to transmit voice or file data. This resource management problem is important because an efficient solution to uplink access control is critical for supporting a large user population with a reasonable level of quality of service (QoS). While there are a number of recently proposed protocols for uplink access control, these protocols possess a common drawback in that they do not adapt well to the burst error properties, which are inevitable in using wireless communication channels. In this paper, we propose a novel TDMA-based uplink access protocol, which employs a channel state dependent allocation strategy. Our protocol is motivated by two observations: 1) when channel state is bad, the throughput is low due to the large amount of FEC (forward error correction) or excessive ARQ (automatic repeated request) that is needed and 2) because of item 1, much of the mobile device's energy is wasted. The proposed protocol works closely with the underlying physical layer in that, through observing the channel state information (CSI) of each mobile device, the MAC protocol first segregates a set of users with good CSI from requests gathered in the request contention phase of an uplink frame. The protocol then judiciously allocates channel bandwidth to contending users based on their channel conditions. Simulation results indicate that the proposed protocol considerably outperforms five state-of-the-art protocols in terms of packet loss, delay, and throughput. |
Persistent Identifier | http://hdl.handle.net/10722/42937 |
ISSN | 2023 Impact Factor: 5.6 2023 SCImago Journal Rankings: 2.340 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kwok, YK | en_HK |
dc.contributor.author | Lau, VKN | en_HK |
dc.date.accessioned | 2007-03-23T04:35:05Z | - |
dc.date.available | 2007-03-23T04:35:05Z | - |
dc.date.issued | 2002 | en_HK |
dc.identifier.citation | Ieee Transactions On Parallel And Distributed Systems, 2002, v. 13 n. 11, p. 1150-1165 | en_HK |
dc.identifier.issn | 1045-9219 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/42937 | - |
dc.description.abstract | We consider the uplink access control problem in a mobile nomadic computing system, which is based on a cellular phone network in that a user can use the mobile device to transmit voice or file data. This resource management problem is important because an efficient solution to uplink access control is critical for supporting a large user population with a reasonable level of quality of service (QoS). While there are a number of recently proposed protocols for uplink access control, these protocols possess a common drawback in that they do not adapt well to the burst error properties, which are inevitable in using wireless communication channels. In this paper, we propose a novel TDMA-based uplink access protocol, which employs a channel state dependent allocation strategy. Our protocol is motivated by two observations: 1) when channel state is bad, the throughput is low due to the large amount of FEC (forward error correction) or excessive ARQ (automatic repeated request) that is needed and 2) because of item 1, much of the mobile device's energy is wasted. The proposed protocol works closely with the underlying physical layer in that, through observing the channel state information (CSI) of each mobile device, the MAC protocol first segregates a set of users with good CSI from requests gathered in the request contention phase of an uplink frame. The protocol then judiciously allocates channel bandwidth to contending users based on their channel conditions. Simulation results indicate that the proposed protocol considerably outperforms five state-of-the-art protocols in terms of packet loss, delay, and throughput. | en_HK |
dc.format.extent | 4403220 bytes | - |
dc.format.extent | 26112 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/msword | - |
dc.language | eng | en_HK |
dc.publisher | I E E E. The Journal's web site is located at http://www.computer.org/tpds | en_HK |
dc.relation.ispartof | IEEE Transactions on Parallel and Distributed Systems | en_HK |
dc.rights | ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Adaptive protocols | en_HK |
dc.subject | Distributed data access | en_HK |
dc.subject | Error control | en_HK |
dc.subject | Mobile computing | en_HK |
dc.subject | Wireless systems | en_HK |
dc.title | A novel channel-adaptive uplink access control protocol for nomadic computing | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1045-9219&volume=13&issue=11&spage=1150&epage=1165&date=2002&atitle=A+novel+channel-adaptive+uplink+access+control+protocol+for+nomadic+computing | en_HK |
dc.identifier.email | Kwok, YK:ykwok@eee.hku.hk | en_HK |
dc.identifier.authority | Kwok, YK=rp00128 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1109/TPDS.2002.1058098 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0036870147 | en_HK |
dc.identifier.hkuros | 82097 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0036870147&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 13 | en_HK |
dc.identifier.issue | 11 | en_HK |
dc.identifier.spage | 1150 | en_HK |
dc.identifier.epage | 1165 | en_HK |
dc.identifier.isi | WOS:000179095500004 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Kwok, YK=7101857718 | en_HK |
dc.identifier.scopusauthorid | Lau, VKN=7005811464 | en_HK |
dc.identifier.issnl | 1045-9219 | - |