File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/97.873571
- Scopus: eid_2-s2.0-0034319939
- WOS: WOS:000089796000008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Recursive Least M-estimate (RLM) adaptive filter for robust filtering in impulse noise
Title | Recursive Least M-estimate (RLM) adaptive filter for robust filtering in impulse noise |
---|---|
Authors | |
Issue Date | 2000 |
Publisher | I E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97 |
Citation | Ieee Signal Processing Letters, 2000, v. 7 n. 11, p. 324-326 How to Cite? |
Abstract | This paper proposes a recursive least M-estimate (RLM) algorithm for robust adaptive filtering in impulse noise. It employs an M-estimate cost function, which is able to suppress the effect of impulses on the filter weights. Simulation results showed that the RLM algorithm performs better than the conventional RLS, NRLS, and OSFKF algorithms when the desired and input signals are corrupted by impulses. Its initial convergence, steady-state error, computational complexity, and robustness to sudden system change are comparable to the conventional RLS algorithm in the presence of Gaussian noise alone. |
Persistent Identifier | http://hdl.handle.net/10722/42829 |
ISSN | 2023 Impact Factor: 3.2 2023 SCImago Journal Rankings: 1.271 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zou, Y | en_HK |
dc.contributor.author | Chan, SC | en_HK |
dc.contributor.author | Ng, TS | en_HK |
dc.date.accessioned | 2007-03-23T04:32:58Z | - |
dc.date.available | 2007-03-23T04:32:58Z | - |
dc.date.issued | 2000 | en_HK |
dc.identifier.citation | Ieee Signal Processing Letters, 2000, v. 7 n. 11, p. 324-326 | en_HK |
dc.identifier.issn | 1070-9908 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/42829 | - |
dc.description.abstract | This paper proposes a recursive least M-estimate (RLM) algorithm for robust adaptive filtering in impulse noise. It employs an M-estimate cost function, which is able to suppress the effect of impulses on the filter weights. Simulation results showed that the RLM algorithm performs better than the conventional RLS, NRLS, and OSFKF algorithms when the desired and input signals are corrupted by impulses. Its initial convergence, steady-state error, computational complexity, and robustness to sudden system change are comparable to the conventional RLS algorithm in the presence of Gaussian noise alone. | en_HK |
dc.format.extent | 91816 bytes | - |
dc.format.extent | 28672 bytes | - |
dc.format.extent | 8772 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/msword | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | I E E E. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97 | en_HK |
dc.relation.ispartof | IEEE Signal Processing Letters | en_HK |
dc.rights | ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.title | Recursive Least M-estimate (RLM) adaptive filter for robust filtering in impulse noise | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1070-9908&volume=7&issue=11&spage=324&epage=326&date=2000&atitle=A+recursive+least+M-estimate+(RLM)+adaptive+filter+for+robustfiltering+in+impulse+noise | en_HK |
dc.identifier.email | Chan, SC:scchan@eee.hku.hk | en_HK |
dc.identifier.email | Ng, TS:tsng@eee.hku.hk | en_HK |
dc.identifier.authority | Chan, SC=rp00094 | en_HK |
dc.identifier.authority | Ng, TS=rp00159 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1109/97.873571 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0034319939 | en_HK |
dc.identifier.hkuros | 50853 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0034319939&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 7 | en_HK |
dc.identifier.issue | 11 | en_HK |
dc.identifier.spage | 324 | en_HK |
dc.identifier.epage | 326 | en_HK |
dc.identifier.isi | WOS:000089796000008 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Zou, Y=7402166847 | en_HK |
dc.identifier.scopusauthorid | Chan, SC=13310287100 | en_HK |
dc.identifier.scopusauthorid | Ng, TS=7402229975 | en_HK |
dc.identifier.issnl | 1070-9908 | - |