File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1017/S0266466603194029
- Scopus: eid_2-s2.0-0042532117
- WOS: WOS:000184312300002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Asymptotic inference for unit root processes with GARCH(1,1) errors
Title | Asymptotic inference for unit root processes with GARCH(1,1) errors |
---|---|
Authors | |
Keywords | Business and economics Economic systems and theories, economic history |
Issue Date | 2003 |
Publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ECT |
Citation | Econometric Theory, 2003, v. 19 n. 4, p. 541-564 How to Cite? |
Abstract | This paper investigates the so-called one-step local quasi-maximum likelihood estimator for the unit root process with GARCH(1,1) errors. When the scaled conditional errors (the ratio of the disturbance to the conditional standard deviation) follow a symmetric distribution, the asymptotic distribution of the estimated unit root is derived only under the second-order moment condition. It is shown that this distribution is a functional of a bivariate Brownian motion as in Ling and Li (1998, Annals of Statistics 26, 84-125) and can be used to construct the unit root test. |
Persistent Identifier | http://hdl.handle.net/10722/42255 |
ISSN | 2023 Impact Factor: 1.0 2023 SCImago Journal Rankings: 1.393 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ling, S | en_HK |
dc.contributor.author | Li, WK | en_HK |
dc.date.accessioned | 2007-01-08T02:32:43Z | - |
dc.date.available | 2007-01-08T02:32:43Z | - |
dc.date.issued | 2003 | en_HK |
dc.identifier.citation | Econometric Theory, 2003, v. 19 n. 4, p. 541-564 | en_HK |
dc.identifier.issn | 0266-4666 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/42255 | - |
dc.description.abstract | This paper investigates the so-called one-step local quasi-maximum likelihood estimator for the unit root process with GARCH(1,1) errors. When the scaled conditional errors (the ratio of the disturbance to the conditional standard deviation) follow a symmetric distribution, the asymptotic distribution of the estimated unit root is derived only under the second-order moment condition. It is shown that this distribution is a functional of a bivariate Brownian motion as in Ling and Li (1998, Annals of Statistics 26, 84-125) and can be used to construct the unit root test. | en_HK |
dc.format.extent | 179271 bytes | - |
dc.format.extent | 104842 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language | eng | en_HK |
dc.publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ECT | en_HK |
dc.relation.ispartof | Econometric Theory | en_HK |
dc.rights | Econometric Theory. Copyright © Cambridge University Press. | en_HK |
dc.subject | Business and economics | en_HK |
dc.subject | Economic systems and theories, economic history | en_HK |
dc.title | Asymptotic inference for unit root processes with GARCH(1,1) errors | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0266-4666&volume=19&issue=4&spage=541&epage=564&date=2003&atitle=Asymptotic+inference+for+unit+root+processes+with+GARCH+(1,+1)+errors | en_HK |
dc.identifier.email | Li, WK: hrntlwk@hku.hk | en_HK |
dc.identifier.authority | Li, WK=rp00741 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1017/S0266466603194029 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0042532117 | en_HK |
dc.identifier.hkuros | 84991 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0042532117&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 19 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 541 | en_HK |
dc.identifier.epage | 564 | en_HK |
dc.identifier.isi | WOS:000184312300002 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Ling, S=7102701223 | en_HK |
dc.identifier.scopusauthorid | Li, WK=14015971200 | en_HK |
dc.identifier.issnl | 0266-4666 | - |