File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Inviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation

TitleInviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation
Authors
KeywordsPhysics
Issue Date1998
PublisherAmerican Institute of Physics. The Journal's web site is located at http://ojps.aip.org/phf
Citation
Physics Of Fluids, 1998, v. 10 n. 5, p. 1111-1119 How to Cite?
AbstractThe dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic sine functional relation between the vorticity and the stream function. The 2-soliton solution of the sinh-Poisson equation with complex wavenumbers will reproduce the Mallier-Maslowe pattern, a row of counter-rotating vortices. A special 4-soliton solution is derived and the corresponding flow configuration is studied. By choosing special wavenumbers complex flows bounded by two rigid walls can result. A conjecture regarding the number of recirculation regions and the wavenumber of the soliton expansion is offered. The validity of the new solution is verified independently by direct differentiation with a computer algebra software. The circulation and the vorticity of these novel flow patterns are finite and are expressed in terms of well defined integrals. The questions of the linear stability and the nonlinear evolution of a finite amplitude disturbance of these steady vortices are left for future studies. © 1998 American Institute of Physics.
Persistent Identifierhttp://hdl.handle.net/10722/42131
ISSN
2015 Impact Factor: 2.017
2015 SCImago Journal Rankings: 1.036
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_HK
dc.contributor.authorKo, NWMen_HK
dc.contributor.authorLeung, RCKen_HK
dc.contributor.authorTang, SKen_HK
dc.date.accessioned2007-01-08T02:29:51Z-
dc.date.available2007-01-08T02:29:51Z-
dc.date.issued1998en_HK
dc.identifier.citationPhysics Of Fluids, 1998, v. 10 n. 5, p. 1111-1119en_HK
dc.identifier.issn1070-6631en_HK
dc.identifier.urihttp://hdl.handle.net/10722/42131-
dc.description.abstractThe dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic sine functional relation between the vorticity and the stream function. The 2-soliton solution of the sinh-Poisson equation with complex wavenumbers will reproduce the Mallier-Maslowe pattern, a row of counter-rotating vortices. A special 4-soliton solution is derived and the corresponding flow configuration is studied. By choosing special wavenumbers complex flows bounded by two rigid walls can result. A conjecture regarding the number of recirculation regions and the wavenumber of the soliton expansion is offered. The validity of the new solution is verified independently by direct differentiation with a computer algebra software. The circulation and the vorticity of these novel flow patterns are finite and are expressed in terms of well defined integrals. The questions of the linear stability and the nonlinear evolution of a finite amplitude disturbance of these steady vortices are left for future studies. © 1998 American Institute of Physics.en_HK
dc.format.extent212125 bytes-
dc.format.extent2061 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherAmerican Institute of Physics. The Journal's web site is located at http://ojps.aip.org/phfen_HK
dc.relation.ispartofPhysics of Fluidsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rightsPhysics of Fluids. Copyright © American Institute of Physics.en_HK
dc.subjectPhysicsen_HK
dc.titleInviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equationen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1070-6631&volume=10&issue=5&spage=1111&epage=1119&date=1998&atitle=Inviscid+two+dimensional+vortex+dynamics+and+a+soliton+expansion+of+the+sinh-Poisson+equationen_HK
dc.identifier.emailChow, KW:kwchow@hku.hken_HK
dc.identifier.authorityChow, KW=rp00112en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1063/1.869636en_HK
dc.identifier.scopuseid_2-s2.0-0000348772en_HK
dc.identifier.hkuros32869-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0000348772&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume10en_HK
dc.identifier.issue5en_HK
dc.identifier.spage1111en_HK
dc.identifier.epage1119en_HK
dc.identifier.isiWOS:000073272000008-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridChow, KW=13605209900en_HK
dc.identifier.scopusauthoridKo, NWM=24522564300en_HK
dc.identifier.scopusauthoridLeung, RCK=7101876138en_HK
dc.identifier.scopusauthoridTang, SK=7403436418en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats