File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Balancing volumetric and gravimetric uptake in highly porous materials for clean energy

TitleBalancing volumetric and gravimetric uptake in highly porous materials for clean energy
Authors
Issue Date2020
Citation
Science, 2020, v. 368, n. 6488, p. 297-303 How to Cite?
AbstractA huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulationmotivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m2 g-1 and a volumetric BET area of 2060 m2 cm-3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g-1) with an uptake of 0.66 g g-1 [262 cm3 (standard temperature and pressure, STP) cm-3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g-1 [238 cm3 (STP) cm-3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter-1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).
Persistent Identifierhttp://hdl.handle.net/10722/333653
ISSN
2021 Impact Factor: 63.714
2020 SCImago Journal Rankings: 12.556
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChen, Zhijie-
dc.contributor.authorLi, Penghao-
dc.contributor.authorAnderson, Ryther-
dc.contributor.authorWang, Xingjie-
dc.contributor.authorZhang, Xuan-
dc.contributor.authorRobison, Lee-
dc.contributor.authorRedfern, Louis R.-
dc.contributor.authorMoribe, Shinya-
dc.contributor.authorIslamoglu, Timur-
dc.contributor.authorGómez-Gualdrón, Diego A.-
dc.contributor.authorYildirim, Taner-
dc.contributor.authorStoddart, J. Fraser-
dc.contributor.authorFarha, Omar K.-
dc.date.accessioned2023-10-06T05:21:20Z-
dc.date.available2023-10-06T05:21:20Z-
dc.date.issued2020-
dc.identifier.citationScience, 2020, v. 368, n. 6488, p. 297-303-
dc.identifier.issn0036-8075-
dc.identifier.urihttp://hdl.handle.net/10722/333653-
dc.description.abstractA huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulationmotivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m2 g-1 and a volumetric BET area of 2060 m2 cm-3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g-1) with an uptake of 0.66 g g-1 [262 cm3 (standard temperature and pressure, STP) cm-3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g-1 [238 cm3 (STP) cm-3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter-1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).-
dc.languageeng-
dc.relation.ispartofScience-
dc.titleBalancing volumetric and gravimetric uptake in highly porous materials for clean energy-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1126/science.aaz8881-
dc.identifier.pmid32299950-
dc.identifier.scopuseid_2-s2.0-85083782156-
dc.identifier.volume368-
dc.identifier.issue6488-
dc.identifier.spage297-
dc.identifier.epage303-
dc.identifier.eissn1095-9203-
dc.identifier.isiWOS:000526525400048-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats