File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Shuttling dynamics in an acid-base-switchable [2]rotaxane

TitleShuttling dynamics in an acid-base-switchable [2]rotaxane
Authors
KeywordsMolecular devices
Molecular dynamics
Photochemistry
Rotaxanes
Supramolecular chemistry
Issue Date2005
Citation
ChemPhysChem, 2005, v. 6, n. 10, p. 2145-2152 How to Cite?
AbstractMolecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations" - a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4′-bipyridinium (bipy2+) unit - located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+->bipy2+> -NH-, Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.
Persistent Identifierhttp://hdl.handle.net/10722/332630
ISSN
2021 Impact Factor: 3.520
2020 SCImago Journal Rankings: 1.016
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGaraudée, Sandrine-
dc.contributor.authorSilvi, Serena-
dc.contributor.authorVenturi, Margherita-
dc.contributor.authorCredi, Alberto-
dc.contributor.authorFlood, Amar H.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:13:02Z-
dc.date.available2023-10-06T05:13:02Z-
dc.date.issued2005-
dc.identifier.citationChemPhysChem, 2005, v. 6, n. 10, p. 2145-2152-
dc.identifier.issn1439-4235-
dc.identifier.urihttp://hdl.handle.net/10722/332630-
dc.description.abstractMolecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations" - a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4′-bipyridinium (bipy2+) unit - located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+->bipy2+> -NH-, Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.-
dc.languageeng-
dc.relation.ispartofChemPhysChem-
dc.subjectMolecular devices-
dc.subjectMolecular dynamics-
dc.subjectPhotochemistry-
dc.subjectRotaxanes-
dc.subjectSupramolecular chemistry-
dc.titleShuttling dynamics in an acid-base-switchable [2]rotaxane-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/cphc.200500295-
dc.identifier.scopuseid_2-s2.0-27144470681-
dc.identifier.volume6-
dc.identifier.issue10-
dc.identifier.spage2145-
dc.identifier.epage2152-
dc.identifier.isiWOS:000232725900022-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats